Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2022 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Решать работу: Онлайн
Интересные задания
2. случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что решка выпала больше раз, чем орёл.
3. Боковые стороны трапеции, описанной около окружности, равны 15 и 22. Найдите среднюю линию трапеции.
5. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующая увеличится в 3 раза, а радиус основания останется прежним?
8. На изготовлении 60 деталей первый рабочий тратит на 4 часа меньше, чем второй рабочий на изготовление 80 таких же деталей. Известно, что первый рабочий за час делает на 2 детали больше, чем второй. Сколько деталей за час делает второй рабочий?
10. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
15. Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего года и четвёртого годов вклад ежегодно пополняется на одну и ту же фиксированную сумму, равную целому числу миллионов рублей. Найдите наименьший возможный размер такой суммы, при котором через четыре года вклад станет не меньше 30 млн рублей.
16. Две окружности касаются внешним образом в точке 𝐾. Прямая 𝐴𝐵 касается первой окружности в точке 𝐴, а второй – в точке 𝐵. Прямая 𝐵𝐾 пересекает первую окружность в точке 𝐷, прямая 𝐴𝐾 пересекает вторую окружность в точке 𝐶.
а) Докажите, что 𝐴𝐵𝐶𝐷 − трапеция.
б) Найдите радиус окружности, описанной около треугольника 𝐵𝐶𝐷, если известно, что радиус первой окружности равен 1, а радиус второй окружности равен 4.