ЕГЭ 2026. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2026 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Интересные задания:
1. В треугольнике 𝐴𝐵𝐶 угол 𝐴 равен 56°, углы 𝐵 и 𝐶 − острые, высоты 𝐵𝐷 и 𝐶𝐸 пересекаются в точке 𝑂. Найдите угол 𝐷𝑂𝐸. Ответ дайте в градусах.
2. Даны векторы 𝑎⃗ (0; 3), 𝑏⃗⃗ (−2; 4) и 𝑐⃗ (4;−1). Найдите длину вектора 𝑎⃗ + 2𝑏⃗⃗ + 𝑐⃗.
3. Шар, объем которого равен 35𝜋, вписан в куб. Найдите объём куба.
4. Вероятность того, что новый тостер прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,82. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
5. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей – 1 очко, если проигрывает – 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,3.
8. На рисунке изображен график 𝑦 = 𝑓 ′ (𝑥) — производной функции 𝑓(𝑥), определенной на интервале (−6; 5). В какой точке отрезка [−5;−1] функция 𝑓(𝑥) принимает наибольшее значение?
9. В боковой стенке высокого цилиндрического бака у самого дна закреплён кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нём, выраженная в метрах, меняется по закону 𝐻(𝑡) = 𝑎𝑡 2 + 𝑏𝑡 +𝐻0 , где 𝐻0 = 3 м – начальный уровень воды, 𝑎 = 1 768 м/мин2 и 𝑏 = − 1 8 м⁄мин − постоянные, 𝑡 − время в минутах, прошедшее с момента открытия крана. В течение какого времени вода будет вытекать из бака? Ответ приведите в минутах.
10. Семья состоит из мужа, жены и их дочери-студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?
14. Точка 𝑀 − середина ребра 𝐴𝐴1 треугольной призмы 𝐴𝐵𝐶𝐴1𝐵1𝐶1 , в основании которой лежит треугольник 𝐴𝐵𝐶. Плоскость 𝛼 проходит через точки 𝐵 и 𝐵1 перпендикулярно прямой 𝐶1𝑀. а) Докажите, что одна из диагоналей грани 𝐴𝐶𝐶1𝐴1 равна одному из рёбер этой грани. б) Найдите расстояние от точки 𝐶 до плоскости 𝛼, если плоскость 𝛼 делит ребро 𝐴𝐶 в отношении 1:5, считая от вершины 𝐴, 𝐴𝐶 = 20, 𝐴𝐴1 = 32.
16. В июле 2025 года планируется взять кредит на десять лет в размере 800 тыс. рублей. Условия его возврата таковы: – каждый январь долг будет возрастать на 𝑟% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; – в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; – в конце 2030 года долг составит 200 тыс. руб; – в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2035 года долг должен быть выплачен полностью. Найдите 𝑟, если общая сумма выплат после полного погашения кредита будет равна 1480 тыс. рублей.
17. В треугольник 𝐴𝐵𝐶 с углом 𝐴 равным 60° вписана окружность, касающаяся стороны 𝐵𝐶 в точке 𝑀.
а) Докажите, что 𝐴𝑀 не больше утроенного радиуса вписанной окружности. б) Найдите синус большего из углов 𝐵𝐴𝑀 и 𝐶𝐴𝑀, если 𝐴𝑀 равно 2,5 радиусам вписанной окружности.
19. Имеется 10 карточек. На них записывают по одному каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11. После этого числа на каждой карточке складывают, а полученные десять сумм перемножают.
а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее целое неотрицательное число может в результате получиться?
Вам будет интересно:
ЕГЭ по математике (профиль) 11 класс 2026. Новый тренировочный вариант №6 (задания и ответы)
