ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №23 (задания и ответы)

ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №23 (задания и ответы) ЕГЭ 2024. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.


Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2024 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти

Интересные задания:

1. Площадь параллелограмма 𝐴𝐵𝐶𝐷 равна 132. Точка 𝐺 − середина стороны 𝐶𝐷. Найдите площадь трапеции 𝐴𝐵𝐺𝐷.

2. Длины векторов 𝑎⃗ и 𝑏⃗⃗ равны 3 и 5, а угол между ними равен 60°. Найдите скалярное произведение 𝑎⃗ ∙ 𝑏⃗⃗.

3. Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 57.

4. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 4 прыгуна из Италии и 6 прыгунов из Мексики. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что двадцать четвёртым будет выступать прыгун из Италии.

5. Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.

6. Найдите корень уравнения 7 −6−𝑥 = 343.

7. Найдите значение выражения
log5 2 log5 13 + log13 0,5

8. На рисунке изображён график 𝑦 = 𝑓 ′ (𝑥) − производной функции 𝑓(𝑥). На оси абсцисс отмечены шесть точек: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 . Сколько из этих точек лежит на промежутках возрастания функции 𝑓(𝑥)?

9. Перед отправкой тепловоз издал гудок с частотой 𝑓0 = 192 Гц. Чуть позже гудок издал подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка 𝑓 (в Гц) больше первого: она зависит от скорости тепловоза 𝜈 (в м/с) по закону 𝑓(𝜈) = 𝑓0 1− 𝜈 𝑐 (Гц), где 𝑐 — скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 8 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а 𝑐 = 300 м/с. Ответ дайте в м/с.

10. Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 180 литров она заполняет на 8 минут дольше, чем вторая труба?

11. На рисунке изображены графики функций видов 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 и 𝑔(𝑥) = 𝑘𝑥, пересекающиеся в точках 𝐴 и 𝐵. Найдите абсциссу точки 𝐵.

12. а) Решите уравнение cos 𝑥 ∙ cos 2𝑥 = √2sin2𝑥 + cos 𝑥. б) Укажите корни этого уравнения, принадлежащие отрезку.

13. В основании прямой призмы 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 лежит параллелограмм 𝐴𝐵𝐶𝐷 с углом 60° при вершине 𝐴. На рёбрах 𝐴1𝐵1 , 𝐵1𝐶1 и 𝐵𝐶 отмечены точки 𝑀, 𝐾 и 𝑁 соответственно так, что четырёхугольник 𝐴𝑀𝐾𝑁 − равнобедренная трапеция с основаниями 2 и 4. а) Докажите, что точка 𝑀 − середина ребра 𝐴1𝐵1 . б) Найдите высоту призмы, если её объём равен 16 и известно, что точка 𝐾 делит ребро 𝐵1𝐶1 в отношении 𝐵1𝐾:𝐾𝐶1 = 1: 3.

14. В основании прямой призмы 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 лежит параллелограмм 𝐴𝐵𝐶𝐷 с углом 60° при вершине 𝐴. На рёбрах 𝐴1𝐵1, 𝐵1𝐶1 и 𝐵𝐶 отмечены точки 𝑀, 𝐾 и 𝑁 соответственно так, что четырёхугольник 𝐴𝑀𝐾𝑁 − равнобедренная трапеция с основаниями 2 и 4.
а) Докажите, что точка 𝑀 − середина ребра 𝐴1𝐵1.
б) Найдите высоту призмы, если её объём равен 16 и известно, что точка 𝐾 делит ребро 𝐵1𝐶1 в отношении 𝐵1𝐾:𝐾𝐶1 = 1: 3.

15. Решите неравенство (log0,25 2 (𝑥 + 3) − log4 (𝑥 2 + 6𝑥 + 9) + 1) ∙ log4 (𝑥 + 2) ≤ 0.

16. В июле 2025 года планируется взять кредит на десять лет в размере 600 тыс. рублей. Условия его возврата таковы: – каждый январь долг будет возрастать на 𝑟% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; – в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; – в конце 2030 года долг составит 400 тыс. руб; – в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2035 года долг должен быть выплачен полностью. Найдите 𝑟, если общая сумма выплат после полного погашения кредита будет равна 1740 тыс. рублей.

17. Дан равносторонний треугольник 𝐴𝐵𝐶. На стороне 𝐴𝐶 выбрана точка 𝑀, серединный перпендикуляр к отрезку 𝐵𝑀 пересекает сторону 𝐴𝐵 в точке 𝐸, а сторону 𝐵𝐶 в точке 𝐾. а) Докажите, что угол 𝐴𝐸𝑀 равен углу 𝐶𝑀𝐾. б) Найдите отношение площадей треугольников 𝐴𝐸𝑀 и 𝐶𝑀𝐾, если 𝐴𝑀: 𝐶𝑀 = 1: 4.

18. Найдите все значения 𝑎, при каждом из которых система уравнений
{(𝑥𝑦 − 2𝑥 + 12) ∙ √𝑦 − 2𝑥 + 12 = 0,
𝑦 = 𝑎𝑥 − 10 имеет ровно два различных решения

19. Из пары натуральных чисел (𝑎; 𝑏), где 𝑎 > 𝑏, за один ход получают пару (𝑎 + 𝑏; 𝑎 − 𝑏). а) Можно ли за несколько таких ходов получить из пары (50; 9) пару, большее число в которой равно 200? б) Можно ли за несколько таких ходов получить из пары (50; 9) пару (408; 370)? в) Какое наименьшее 𝑎 может быть в паре (𝑎; 𝑏), из которой за несколько ходов можно получить пару (408; 370)?

Вам будет интересно:

ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №22 (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *