ЕГЭ по математике (профиль) 11 класс 2022. Новый тренировочный вариант №20 — №220124 (задания и ответы)

ЕГЭ по математике (профиль) 11 класс 2022. Новый тренировочный вариант №20 - №220124 (задания и ответы)ЕГЭ. Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2022 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ЕГЭ: Скачать

Решать работу: Онлайн

Интересные задания

2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей – 1 очко, если проигрывает – 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,3.

5. Площадь основания конуса равна 48. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 4 и 12, считая от вершины. Найдите площадь сечения конуса этой плоскостью.

8. Заказ на 140 деталей первый рабочий выполняет на 4 часа быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 4 детали больше?

10. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

15. В июле планируется взять кредит в банке на сумму 7 млн рублей на срок 10 лет. Условия возврата таковы:
– каждый январь долг возрастает на 𝑟% по сравнению с концом предыдущего года;
– с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем. Найдите наименьшую возможную ставку 𝑟, если известно, что последний платёж будет не менее 0,819 млн рублей.

16. В трапеции 𝐴𝐵𝐶𝐷 точка 𝐸 − середина основания 𝐴𝐷, точка 𝑀 − середина боковой стороны 𝐴𝐵. Отрезки 𝐶𝐸 и 𝐷𝑀 пересекаются в точке 𝑂.
а) Докажите, что площади четырёхугольника 𝐴𝑀𝑂𝐸 и треугольника 𝐶𝑂𝐷 равны.
б) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника 𝐴𝑀𝑂𝐸, если 𝐵𝐶 = 3, 𝐴𝐷 = 4.

18. Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512, и
а) пять;
б) четыре;
в) три

Вам будет интересно:

ЕГЭ по математике (профиль) 11 класс 2022. Новый тренировочный вариант №18 — №220110 (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *