ЕГЭ Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий с кратким ответом базового уровня сложности. Часть 2 содержит 4 задания с кратким ответом повышенного уровня сложности и 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2021 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Решать работу: Онлайн
Интересные задания
1. Таксист за месяц проехал 11 000 км. Цена бензина 35 рублей за литр. Средний расход бензина на 100 км составляет 7 литров. Сколько рублей потратил таксист на бензин за этот месяц?
2. На диаграмме показана среднемесячная температура воздуха (в градусах Цельсия) в Хабаровске по результатам многолетних наблюдений. Найдите по диаграмме количество месяцев, когда среднемесячная температура в Хабаровске отрицательна.
4. Вероятность того, что новый тостер прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,82. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
11. Петя и Митя выполняют одинаковый тест. Петя отвечает за час на 10 вопросов теста, а Митя — на 16. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Мити на 117 минут. Сколько вопросов содержит тест?
16. В остроугольном треугольнике 𝐴𝐵𝐶 проведены высоты 𝐴𝑃 и 𝐶𝑄.
а) Докажите, что угол 𝑃𝐴𝐶 равен углу 𝑃𝑄𝐶.
б) Найдите радиус окружности, описанной около треугольника 𝐴𝐵𝐶, если известно, что 𝑃𝑄 = 8 и ∠𝐴𝐵𝐶 = 60°.
17. В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?
19. Максим должен был умножить двузначное число на трёхзначное число (числа с нуля начинаться не могут). Вместо этого он просто приписал трёхзначное число справа к двузначному, получив пятизначное число, которое оказалось в 𝑁 раз (𝑁 − натуральное число) больше правильного результата.
а) Могло ли 𝑁 равняться 2?
б) Могло ли 𝑁 равняться 10?
в) Каково наибольшее возможное значение 𝑁?