Официальная олимпиада-игра Смарт — Кенгуру по математике 2026 все классы (задания и ответы)

Официальная олимпиада-игра Смарт - Кенгуру по математике 2025 все классы (задания и ответы)Олимпиаду по математике Кенгуру пишут школьники по всей России. Ниже предоставлены задания и авторские решения (ответы) для игры «СМАРТ КЕНГУРУ». Олимпиаду пишут 12 февраля 2026 года

Некоторые задания и решения:

1 класс
1. Какие два флажка надо поменять местами, чтобы в гирлянде получилось слово СМАРТИК?
Ответ: М и Т

2. Числа 3, 1, 6, 5, 7 и 8 надо расположить в порядке возрастания. Какое число будет четвёртым в этом списке?
Ответ: 6

3. В компьютерной игре герою надо как можно быстрее добраться по лестницам от А к Б. По скольким лестницам он будет идти вниз?
Ответ: 2

4. В каждой задаче отметь КРЕСТИКОМ один ответ. Вместо цифры 5 Федя рисует ладошку, вместо 4 – квадратик, а вместо 3 – треугольник. Найди ответ в примере на рисунке.
Ответ: 3

5. Смартик хочет закрасить все квадратики на рисунке. Он закрашивает их через один, двигаясь по стрелочке. Какой квадратик он закрасит последним?
Ответ: Г

Посмотреть полные задания и ответы

2 класс
1. В каком месте надо разрезать гирлянду, чтобы получились две части с одной и той же суммой цифр?
Ответ: Г

2. В примере 1 __ + __ 1 = 55 квадратики заменяют одну и ту же цифру. Какую?
Ответ: (Г) 4

3. Какие часы показывают 9 часов 20 минут?
Ответ: А

4. Из двух «уголков» сложили прямоугольник, в котором верхняя правая клеточка оказалась зелёной. Какая клеточка заняла место знака вопроса?
Ответ: Г

5. Маша и Даша вырезали к празднику поровну бумажных снежинок. Маша вырезала 8 больших снежинок и 4 маленьких. Даша больших снежинок вырезала только 5. Сколько маленьких снежинок она вырезала?
Ответ: (Б) 7

6. Найди такую же звёздочку, как на рисунке справа.
Ответ: Г

Посмотреть полные задания и ответы

3-4 класс
1. Сумма цифр числа 2026 равна 10. Сколько еще раз в этом столетии (до 2100 года) сумма цифр года будет равна 10?
Ответ: (В) 6

2. Кирилл катался на лыжах по горкам. Он нарисовал схему своего пути со спусками и подъёмами. Сколько у него было подъёмов?
Ответ: (Г) 6

3. Дима записал цифрами число сто два миллиона семьдесят две тысячи три. Сколько нулей в его записи?
Ответ: (Г) 4

4. У Кати есть 5 «уголков» из трёх клеточек каждый. Она положила их внутрь квадрата, показанного справа. При этом каждая клеточка уголка совпала с клеточкой того же цвета в квадрате. Сколько уголков легли поверх звёздочки?
Ответ: (В) 3

5. Сколько яблок разрезала мама, если на тарелке оказалось 7 половинок и 6 четвертинок?
Ответ: (В) 5

6. Аня сложила из спичек число 9999 и хочет превратить его в число 2026. За один ход она может или убрать одну спичку, или переложить одну спичку. Какое самое маленькое число ходов ей понадобится?
Ответ: (Г) 6

7. Туристы отправились в поход в четверг в полдень. Поход длился 50 часов. В какой день недели они вернулись?
Ответ: (Б) в субботу

Посмотреть полные задания и ответы

5-6 класс
1. Смартик нарисовал плакат с датой конкурса «Смарт Кенгуру», а Вомбат разрезал плакат на две полоски. На каком рисунке изображена одна из этих полосок?
Ответ: в

2. Дюжина – это 12. Из пары десятков дюжин вычли дюжину десятков. Сколько дюжин получилось?
Ответ: (В) 10

3. Смартик хочет вписать в клетки буквы своего имени так, чтобы двигаясь по стрелочкам можно было прочитать слово СМАРТИК. Какая надпись получится?
Ответ: (Д) СТРМКАИ

4. Федя придумал новый шифр: произведение чисел a и b он обозначает (a, b), а сумму чисел a и b обозначает [a, b]. Чему равно ([(2, 3), 3], 5)?
Ответ: (Г) 45

5. Вася построил лабиринт и посадил муравья в закрашенную клетку со стенками a, b, c и d. Какую стенку надо сломать, чтобы муравей мог выбраться из лабиринта?
Ответ: (Г) d

6. На доске написано 12 четных и 2026 нечетных чисел. К каждому четно-
му числу прибавили 1, а из каждого нечетного вычли 2. Сколько четных
чисел теперь на доске?
Ответ: (А) 0

7. Стойкий оловянный солдатик стоял лицом на север. Потом он выполнил в некотором порядке команды: 7 раз – «налево», 5 – «направо» и 3 – «кругом». Куда теперь смотрит оловянный солдатик?
Ответ: (А) на север

Посмотреть полные задания и ответы

7-8 класс
1. 1. Смартик хочет вписать в клетки на полоске буквы своего имени так, что если двигаться по стрелочкам, имя СМАРТИК будет читаться правильно. Какая надпись получится?
Ответ: (Г) САМКРИТ

2. Что не является единицей измерения длины?
Ответ: (Г) пуд

3. В числе 123489 поменяли местами две цифры так, что получилось число, которое делится на 4. Чему равна сумма цифр, которые поменяли местами?
Ответ: (В) 13

4. На рисунке изображены пять лучей. Сколько точек пересечения у этих лучей?
Ответ: (В) 4

5. Маша, Аня, Галя и Света решили купить тортик. Они собрали поровну денег, но оказалось, что тортик продается со скидкой 10%, поэтому каждая девочка получила 15 рублей обратно. Сколько рублей стоил тортик без скидки?
Ответ: (Д) 600

6. Внутри квадрата нарисована петля. Квадрат разрезали на две части, одна из которых изображена справа, а вторая – на одном из рисунков А–Д. На каком?
Ответ: д

7. Смартик использует не только обычные цифры, но еще и «отрицательные цифры»: (–1), (–2), (–3), …, (–9). Например, 2 (–3) 4 = 2 . 100 + + (–3) . 10 + 4 = 174. Чему равно число 1(–1)11(–1)?
Ответ: (А) 9109

Посмотреть полные задания и ответы

9-10 класс
1. Смартик решил заняться альпинизмом. Он нарисовал схему горной цепи с пиками и впадинами. Сколько пиков ниже самой высокой впадины?
Ответ: (Д) 4

2. Вася нашел пять дюжин процентов от двух дюжин. Что получилось?
Ответ: (Д) 14,4

3. Назовем трехзначное число зубчатым, если первая его цифра больше второй, а вторая – меньше третьей. Петя нашел самое большое из зубчатых чисел, следующее за которым – тоже зубчатое. Чему равна сумма цифр найденного числа?
Ответ: (Б) 24

4. Автомобиль проехал из пункта А в пункт В, двигаясь по стрелочкам. Сколько раз он поворачивал на острый угол?
Ответ: (Г) 5

5. Средняя линия треугольника лежит на серединном перпендикуляре к одной из его сторон. Тогда этот треугольник обязательно
Ответ: (В) прямоугольный

6. Точки на рисунке разбили на пары, потом каждую пару соединили отрезком. Оказалось, что эти четыре отрезка не пересекаются друг с другом. Какие две точки не могли быть соединены?
Ответ: (Г) B и E

7. Из куба квадрата куба положительного числа x извлекли квадратный корень. Что получилось?
Ответ: (Г) x 9

Посмотреть полные задания и ответы

Вам будет интересно:

Кенгуру и Смарт Кенгуру — математический конкурс 2025-2026 учебный год (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *