ОГЭ по математике 9 класс 2024. Новый тренировочный вариант №3 — №230911 (задания и ответы)

ОГЭ по математике 9 класс 2024. Новый тренировочный вариант №3 - №230911 (задания и ответы) ОГЭ 2024. Экзаменационная работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2024 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ОГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти

Интересные задания:

В горных районах, особенно в южных широтах с влажным климатом, земледельцы на склонах гор устраивают террасы. Земледельческие террасы – это горизонтальные площадки, напоминающие ступени. Во время дождя вода стекает с верхних террас вниз по специальным каналам. Поэтому почва на террасах не размывается и урожай не страдает.

Медленный сток воды с вершины склона вниз с террасы на террасу позволяет выращивать даже влаголюбивые культуры. В Юго-Восточной Азии террасное земледелие широко применяется для производства риса, а в Средиземноморье – для выращивания винограда и оливковых деревьев. Возделывание культур на террасах повышает урожайность, но требует тяжелого ручного труда.

Земледелец владеет несколькими участками, один из которых расположен на склоне холма. Ширина участка 50 м, а верхняя точка находится на высоте 16 м от подножия.

1. Земледелец на расчищенном склоне холма выращивает мускатный орех. Какова площадь, отведённая под посевы? Ответ дайте в квадратных метрах.

2. Земледелец решил устроить террасы на своём участке (см. рисунок ниже), чтобы выращивать рис, пшено или кукурузу. Строительство террас возможно, если угол склона (уклон) не больше 50% (тангенс угла склона 𝛼, умноженный на 100%). Удовлетворяет ли склон холма этим требованиям? Сколько процентов составляет уклон? Ответ округлите до десятых.

3. На сколько процентов сократилась посевная площадь после того, как земледелец устроил террасы? Ответ округлите до десятых.

4. Земледелец получает 700 г бурого риса с одного квадратного метра засеянной площади. При шлифовке из бурого риса получается белый рис, но при этом теряется 14% массы. Сколько килограммов белого риса получит земледелец со всего своего участка?

5. В таблице дана урожайность культур, которые может засеять земледелец на своём террасированном участке. За год обычно собирают два урожая – летом и осенью. По данным таблицы посчитайте наибольшее число килограммов урожая, которое может собрать земледелец с участка за один год, если он может засевать разные культуры.

9. Решите уравнение 𝑥 2 − 6𝑥 = 16. Если уравнение имеет более одного корня, в ответ запишите меньший из корней.

10. У бабушки 10 чашек: 7 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12. Центростремительное ускорение при движении по окружности (в м/с 2 ) вычисляется по формуле 𝑎 = 𝜔 2𝑅, где 𝜔 − угловая скорость (в с −1 ), 𝑅 − радиус окружности (в метрах). Пользуясь этой формулой, найдите радиус 𝑅, если угловая скорость равна 8,5 с −1 , а центростремительное ускорение равно 289 м/с 2 . Ответ дайте в метрах.

13. Укажите решение неравенства 3𝑥 − 2(𝑥 − 5) ≤ −6. 1) [4; +∞) 2) (−∞; 4] 3) (−∞; −16] 4) [−16; +∞)

14. В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 555 рублей, а в 13-й день – 631 рубль?

15. Диагональ 𝐴𝐶 параллелограмма 𝐴𝐵𝐶𝐷 образует с его сторонами углы, равные 30° и 45°. Найдите больший угол этого параллелограмма. Ответ дайте в градусах.

16. Угол 𝐴 четырёхугольника 𝐴𝐵𝐶𝐷, вписанного в окружность, равен 82°. Найдите угол 𝐶 этого четырёхугольника. Ответ дайте в градусах.

17. Периметр ромба равен 24, а один из углов равен 30°. Найдите площадь этого ромба.

18. На клетчатой бумаге с размером клетки 1 × 1 изображён треугольник 𝐴𝐵𝐶. Найдите длину его средней линии, параллельной стороне 𝐴𝐶.

19. Какие из следующих утверждений верны? 1) Если диагонали параллелограмма равны, то этот параллелограмм является ромбом. 2) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу. 3) В любом тупоугольном треугольнике есть острый угол. В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

21. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставался 1 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.

23. Точка 𝐻 является основанием высоты 𝐵𝐻, проведённой из вершины прямого угла 𝐵 прямоугольного треугольника 𝐴𝐵𝐶. Окружность с диаметром 𝐵𝐻 пересекает стороны 𝐴𝐵 и 𝐶𝐵 в точках 𝑃 и 𝐾 соответственно. Найдите 𝐵𝐻, если 𝑃𝐾 = 15.

24. Окружности с центрами в точках 𝐼 и 𝐽 не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении 𝑚: 𝑛. Докажите, что диаметры этих окружностей относятся как 𝑚: 𝑛.

25. В равнобедренную трапецию, периметр которой равен 120, а площадь равна 540, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Вам будет интересно:

ОГЭ по математике 9 класс 2024. Новый тренировочный вариант №2 — №230911 (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *