ЕГЭ 2024. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2024 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Интересные задания:
1. Площадь треугольника равна 54, а его периметр 36. Найдите радиус вписанной окружности.
4. За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
2. На координатной плоскости изображены векторы a, b и c с целочисленными координатами. Найдите длину вектора a b c .
3. Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2 3 и наклонены к плоскости основания под углом 30.
4. За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом
5. Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
10. Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?
16. В июле планируется взять кредит на сумму 8 052 000 рублей. Условия его возврата таковы: каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; с февраля по июнь каждого года необходимо выплатить некоторую часть долга. Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен четырьмя равными платежами (т. е. за четыре года)?
17. В прямоугольном треугольнике ABC точка M лежит на катете AC, а точка N лежит на продолжении катета BC за точку C, причѐм СM = BC и CN = AC. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно.
а) Докажите, что CP и СQ перпендикулярны.
б) Найдите PQ, если BC = 3, а AC = 5.
Вам будет интересно:
ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №21 (задания и ответы)