ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №9 — №230911 (задания и ответы)

ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №9 - №230911 (задания и ответы)ЕГЭ 2024. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2024 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти

Интересные задания:

1. Стороны параллелограмма равны 5 и 10. Высота, опущенная на меньшую из этих сторон, равна 3. Найдите высоту, опущенную на большую сторону параллелограмма.

2. На координатной плоскости изображены векторы 𝑎⃗ и 𝑏⃗⃗. Найдите cos 𝛼, где 𝛼 − угол между векторами 𝑎⃗ и 𝑏⃗⃗.

3. Дано два шара. Диаметр первого шара в 8 раз больше диаметра второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

4. В группе туристов 300 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 15 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист В. полетит первым рейсом вертолёта.

5. Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,8. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.

6. Решите уравнение √40 + 3𝑥 = 𝑥. Если уравнение имеет более одного корня, укажите меньший из них.

7. Найдите значение выражения (649 ) 3 : (165 ) 8 .

8. На рисунке изображен график 𝑦 = 𝑓 ′ (𝑥) — производной функции 𝑓(𝑥), определенной на интервале (−6; 5). В какой точке отрезка [−5; −1] функция 𝑓(𝑥) принимает наибольшее значение?

9. В боковой стенке высокого цилиндрического бака у самого дна закреплён кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нём, выраженная в метрах, меняется по закону 𝐻(𝑡) = 𝑎𝑡 2 + 𝑏𝑡 + 𝐻0 , где 𝐻0 = 3 м – начальный уровень воды, 𝑎 = 1 768 м/мин2 и 𝑏 = − 1 8 м мин − постоянные, 𝑡 − время в минутах, прошедшее с момента открытия крана. В течение какого времени вода будет вытекать из бака? Ответ приведите в минутах.

10. Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в город B на 12 часов раньше, чем велосипедист приехал в город А, а встретились они через 2 часа 30 минут после выезда. Сколько часов затратил на путь из города B в город A велосипедист?

11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑘 𝑥 . Найдите значение 𝑓(10).

12. Найдите наибольшее значение функции 𝑦 = 33𝑥 − 30 sin 𝑥 + 29 на отрезке [−𝜋2; 0].

13. а) Решите уравнение 8 𝑥 − 7 ∙ 4 𝑥 − 2 𝑥+4 + 112 = 0. б) Укажите корни этого уравнения, принадлежащие отрезку [log2 5 ; log2 11].

14. В основании прямой призмы 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 лежит параллелограмм 𝐴𝐵𝐶𝐷 с углом 60° при вершине 𝐴. На рёбрах 𝐴1𝐵1 , 𝐵1𝐶1 и 𝐵𝐶 отмечены точки 𝑀, 𝐾 и 𝑁 соответственно так, что четырёхугольник 𝐴𝑀𝐾𝑁 − равнобедренная трапеция с основаниями 2 и 4. а) Докажите, что точка 𝑀 − середина ребра 𝐴1𝐵1 . б) Найдите высоту призмы, если её объём равен 16 и известно, что точка 𝐾 делит ребро 𝐵1𝐶1 в отношении 𝐵1𝐾:𝐾𝐶1 = 1: 3.

15. Решите неравенство (5 − 2𝑥) ∙ log−𝑥 2+4𝑥−3 (𝑥 − 1) ≥ 0.

16. В июле 2016 года планируется взять кредит в банке на четыре года в размере 𝑆 млн рублей, где 𝑆 − целое число. Условия его возврата таковы: – каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей. Найдите наибольшее значение 𝑆, при котором общая сумма выплат будет меньше 50 млн рублей.

17. В прямоугольном треугольнике 𝐴𝐵𝐶 точка 𝑀 лежит на катете 𝐴𝐶, а точка 𝑁 лежит на продолжении катета 𝐵𝐶 за точку 𝐶, причём 𝐶𝑀 = 𝐵𝐶 и 𝐶𝑁 = 𝐴𝐶. Отрезки 𝐶𝑃 и 𝐶𝑄 − биссектрисы треугольников 𝐴𝐶𝐵 и 𝑁𝐶𝑀 соответственно. а) Докажите, что 𝐶𝑃 и 𝐶𝑄 перпендикулярны. б) Найдите 𝑃𝑄, если 𝐵𝐶 = 3, а 𝐴𝐶 = 5.

18. Найдите все значения 𝑎, при каждом из которых уравнение 𝑥 2 + (𝑥 − 1) ∙ √2𝑥 − 𝑎 = 𝑥 имеет ровно один корень на отрезке [0; 1].

19. Есть три коробки: в первой коробке 97 камней, во второй – 104, в третьей пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся. а) Могло ли в первой коробке оказаться 97 камней, во второй – 89, в третьей – 15? б) Могло ли в третьей коробке оказаться 201 камень? в) Какое наибольшее число камней могло оказаться в третьей коробке?

Вам будет интересно:

ЕГЭ по математике (профиль) 11 класс 2024. Новый тренировочный вариант №7 — №230911 (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *