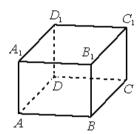

Тренировочный вариант № 01. ФИПИ.


Часть 1.

Ответом к заданиям 1–11 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

1. В прямоугольном треугольнике угол между высотой и биссектрисой, проведёнными из вершины прямого угла, равен 16°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

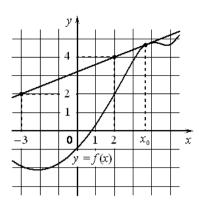
2. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=24, AD=18, $AA_1=12$. Найдите площадь сечения, проходящего через вершины A, A_1 и C.

Ответ:		

3. В группе туристов 300 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 12 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист В. полетит первым рейсом вертолёта.

Ответ:		

4. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8°C, равна 0,88. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8°C или выше.

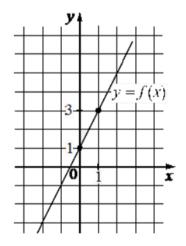

Ответ:

5. Найдите корень уравнения $\frac{3}{7}x = -8\frac{4}{7}$.

Ответ: ______.

6. Найдите значение выражения $\frac{(\sqrt{3} + \sqrt{2})^2}{50 + 20\sqrt{6}}$

Ответ: _____.


7. На рисунке изображены график дифференцируемой функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Ответ:	

8. Автомобиль, движущийся со скоростью v_0 =18 м/с, начал торможение с постоянным ускорением a =6 м/с². За t секунд после начала торможения он прошёл путь $S = v_0 t - \frac{at^2}{2}$ (м). Определите время, прошедшее с момента начала торможения, если известно, что за это время автомобиль проехал 24 метра. Ответ дайте в секундах.

_		
Ответ:		
OIDCI.		

9. Имеется два сплава. Первый сплав содержит 5% меди, второй – 12% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 9% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

10. На рисунке изображён график функции вида f(x)=kx+b. Найдите значение f(6).

Ответ:		
OIBCI.		

11. Найдите наименьшее значение функции $y = \frac{2}{3}x\sqrt{x} - 6x + 60$ на отрезке [9; 36].

0	
Ответ:	

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

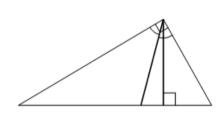
Часть 2.

Для записи решений и ответов на задания 12–18 используйте БЛАНК ОТ-ВЕТОВ № 2. Запишите сначала номер выполняемого задания (12, 13 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- **12.** *a*) Решите уравнение $1 + \log_3(x^4 + 25) = \log_{\sqrt{3}} \sqrt{30x^2 + 12}$;
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\frac{1}{5}; 3\frac{1}{5}\right]$.
- **13.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: $AB=6\sqrt{2}$, AD=10, $AA_1=16$. На рёбрах AA_1 и BB_1 отмечены точки Е и F соответственно, причём $A_1E:EA=5:3$ и $B_1F:FB=5:11$. Точка T − середина ребра B_1C_1 .
- а) Докажите, что плоскость EFT проходит через точку D₁.
- б) Найдите площадь сечения параллелепипеда плоскостью EFT.
- **14.** Решите неравенство $45^x 27^x 18 \cdot 15^x + 2 \cdot 9^{x+1} + 81 \cdot 5^x 3^{x+4} \le 0$.
- **15.** 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
- -1-го числа каждого месяца долг увеличивается на r% по сравнению с концом предыдущего месяца, где r- **целое** число;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

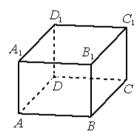
Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг (в млн рублей)	1	0,6	0,4	0,3	0,2	0,1	0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.


16. —

17. Найдите все значения a, при каждом из которых уравнение $\frac{5}{x+2} = a|x-3|$ на промежутке $[0; +\infty)$ имеет более двух корней.

Тренировочный вариант № 02. ФИПИ.


Часть 1.

Ответом к заданиям 1–11 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

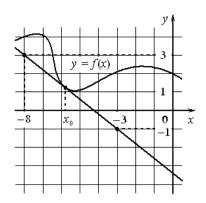
1. В прямоугольном треугольнике угол между высотой и биссектрисой, проведёнными из вершины прямого угла, равен 17°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

2. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=24, AD=10, $AA_1=15$. Найдите площадь сечения, проходящего через вершины A, A_1 и C.

Ответ:		

3. В группе туристов 200 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 14 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист В. полетит первым рейсом вертолёта.

_		
Ответ:		

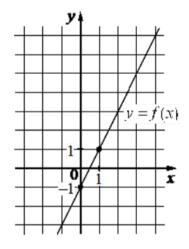

4. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8°C, равна 0,92. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8°C или выше.

\sim	
Ответ:	

5. Найдите корень уравнения $\frac{5}{9}x = -7\frac{2}{9}$.

6. Найдите значение выражения $\frac{(\sqrt{5}-\sqrt{6})^2}{55-10\sqrt{30}}$

O		
Ответ:		_


7. На рисунке изображены график дифференцируемой функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

8. Автомобиль, движущийся со скоростью v_0 = 24 м/с, начал торможение с постоянным ускорением a = 4 м/с². За t секунд после начала торможения он прошёл путь $S = v_0 t - \frac{at^2}{2}$ (м). Определите время, прошедшее с момента начала торможения, если известно, что за это время автомобиль проехал 64 метра. Ответ дайте в секундах.

Ответ:	
OTBET.	

9. Имеется два сплава. Первый сплав содержит 40% меди, второй – 15% меди. Масса первого сплава больше массы второго на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Ответ:		

10. На рисунке изображён график функции вида f(x)=kx+b. Найдите значение f(8).

\sim	
Ответ:	
COLDUL.	

11. Найдите наименьшее значение функции $y = \frac{2}{3}x\sqrt{x} - 3x - 2$ на отрезке [1; 9].

Не забудьте перенести все ответы в бланк ответов \mathbb{N}_2 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2.

Для записи решений и ответов на задания 12–18 используйте БЛАНК ОТ-ВЕТОВ № 2. Запишите сначала номер выполняемого задания (12, 13 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- **12.** *a*) Решите уравнение $1 + \log_5(x^4 + 16) = \log_{\sqrt{5}} \sqrt{35x^2 + 30}$;
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{3}{2};\ \frac{5}{2}\right]$.
- **13.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: $AB=2\sqrt{5}$, AD=18, $AA_1=21$. На рёбрах AA_1 и BB_1 отмечены точки Е и F соответственно, причём $A_1E:EA=6:1$ и $B_1F:FB=3:4$. Точка T − середина ребра B_1C_1 .
- а) Докажите, что плоскость EFT проходит через точку D₁.
- б) Найдите площадь сечения параллелепипеда плоскостью EFT.
- **14.** Решите неравенство $28^x 8^x 16 \cdot 14^x + 4^{x+2} + 64 \cdot 7^x 2^{x+6} \le 0$.
- **15.** 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
- -1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r **целое** число;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг (в млн рублей)	1	0,9	0,8	0,7	0,6	0,5	0

Найдите наименьшее значение r, при котором общая сумма выплат будет больше 1,2 млн рублей.

16. —

17. Найдите все значения a, при каждом из которых уравнение $\frac{2}{x+1} = a|x-5|$ на промежутке $[0; +\infty)$ имеет более двух корней.

ЕГЭпроф 2023. Тренировочный вариант № 01. Ответы

Задание	1	2	3	4	5	6
ответ	29	360	0,04	0,12	-20	0,1

Задание	7	8	9	10	11
ответ	0,4	2	14	13	-12

Задание	12	13	14	15	17
ответ	a) $\pm \sqrt{3}$; $\pm \sqrt{7}$ 6) $\pm \sqrt{3}$; $\sqrt{7}$	а) – б) 97,5	(-∞;0]∪{2}	7	$\left(\frac{4}{5}; \frac{5}{6}\right]$

ЕГЭпроф 2023. Тренировочный вариант № 02. Ответы

Задание	1	2	3	4	5	6
ответ	28	390	0,07	0,08	-13	0,2

Задание	7	8	9	10	11
ответ	-0,8	4	25	15	-11

Задание	12	13	14	15	17
ответ	a) $\pm \sqrt{2}$; $\pm \sqrt{5}$ 6) $\pm \sqrt{2}$; $\sqrt{5}$	а) – б) 148,5	(-∞;0]∪{3}	5	$\left(\frac{2}{9}; \frac{2}{5}\right]$

ЕГЭпроф 2023. Тренировочный вариант № 03. Ответы

Задание	1	2	3	4	5	6
ответ	40	48	0,35	0,81	11	3

Задание	7	8	9	10	11
ответ	2	18	70	15	4

Задание	12	13	14	15	17
ответ	а) 1; 1,5 б) 1,5	а) – б) arctg 17/8	См. ↓	3	(-∞;2]∪[6;+∞)

Задание	14
ответ	$(-\infty; -\sqrt{2}) \cup (-\sqrt{2}; -1] \cup \{0\} \cup [1; \sqrt{2}) \cup (\sqrt{2}; +\infty)$

ЕГЭпроф 2023. Тренировочный вариант № 04. Ответы

Задание	1	2	3	4	5	6
ответ	30	56	0,45	0,82	10	2

Задание	7	8	9	10	11
ответ	-1	12	80	15	6

Задание	12	13	14	15	17
ответ	а) 1; 1,5 б) 1	a) – 6) $arctg \frac{5}{3}$	См. ↓	2	(-∞; -1] ∪[5; +∞)

Задание	14
ответ	$(-\infty; -\sqrt{2}) \cup (-\sqrt{2}; -1] \cup \{0\} \cup [1; \sqrt{2}) \cup (\sqrt{2}; +\infty)$

ЕГЭпроф 2023. Тренировочный вариант № 05. Ответы

Задание	1	2	3	4	5	6
ответ	71	82	0,35	0,09	101	-0,9

Задание	7	8	9	10	11
ответ	2	1,2	39	-0,2	2

Задание	12	13	14
ответ	a) $\left\{ \frac{\pi}{6} + \pi \mathbf{k}, \frac{5\pi}{6} + \pi \mathbf{m}, \mathbf{k}, \mathbf{m} \in \mathbf{Z} \right\}$ 6) $-\frac{19\pi}{6}; -\frac{17\pi}{6}; -\frac{13\pi}{6}$	6) $\frac{2\sqrt{10}}{5}$	$(-\infty;0)\cup[1;\mathbf{log_57})$

Задание	15	17	
ответ	5	$[-2;-1)\cup(-1;1)\cup(1;2]$	

ЕГЭпроф 2023. Тренировочный вариант № 06. Ответы

Задание	1	2	3	4	5	6
ответ	62	78	0,42	0,08	89	-0,7

Задание	7	8	9	10	11
ответ	3	1,6	34	0,2	0

Задание	12	13	14
ответ	a) $\left\{\pm \frac{\pi}{4} + \pi \mathbf{k}, \ \mathbf{k} \in \mathbf{Z} \right\}$ 6) $-\frac{7\pi}{4}$; $-\frac{5\pi}{4}$	6) $\frac{2\sqrt{21}}{7}$	$(-\infty; 2] \cup (\log_2 5; 3)$

Задание	15	17	
ответ	4	[-4; -3) \cup (-3; 3) \cup (3; 4]	