Оглавление

Д	
e	Задача 9-1
в	Задача 9-2 5
Я	Задача 9-3
m	Задача 9-4
bl	Задача 9-5 8
й Д	
e	Задача 10-1
K C	Задача 10-2
Л Я	Задача 10-3
a m	Задача 10-414
C bl	Задача 10-5
с Й	
d	Задача 11-1
K U	Задача 11-219
л Н	Задача 11-3
а н	Задача 11-4
c a	Задача 11-5
c d T	Зидили 11 <i>3</i>
I U a	
w	

а б

т Л

ы и й ц

a K

Л И

a o

 \boldsymbol{c}

Девятый класс

Проверке подлежит только лицевая сторона бланка ответа! Все численные результаты должны быть подтверждены расчетом, хотя бы коротким. Все качественные ответы должны иметь обоснование, хотя бы короткое. В противном случае оценка 0 баллов.

<u>Задача 9-1</u>

Одним из устаревающих способов получения крупнотоннажного продукта химической промышленности неорганического вещества \mathbf{K} из газа \mathbf{X} является каталитический цикл с использованием газа \mathbf{Y} – так называемый ... *метод*.

Последовательность реакций в данном цикле с коэффициентами приведена ниже:

$$2\mathbf{Y} + \mathbf{O} \to 2\mathbf{Z} \tag{I}$$

$$Y + Z + 2K \rightarrow 2G + H_2O$$
 (II)

$$H_2O + G \rightarrow K + L$$
 (III)

$$2L + X \rightarrow K + 2Y \tag{IV}$$

Известно, что G имеет ионное строение и содержит 4 элемента в своём составе, а L – нестабильное соединение, существующее только в растворе.

Запишите суммарное уравнение получения ${\bf K}$ (можно использовать буквенные обозначения веществ).

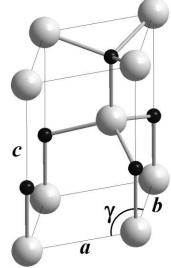
Определите неизвестные соединения, представленные на схеме.

Примесным компонентом в получаемом растворе \mathbf{K} является соединение \mathbf{P} со схожими химическими свойствами, присутствие которого обусловлено использованием \mathbf{Y} в качестве катализатора.

Определите соединение **P**. Приведите уравнение реакции, объясняющие образование соединения **P** в растворе **K**.

Приведите название описанного метода получения \mathbf{K} .

При использовании стехиометрических количеств реагентов реакции имеют следующие выходы: I-48%, II-88%, III-87%, IV-74%.


Вычислите расход реагентов (в тоннах) на получение 1 тонны чистого \mathbf{K} . Примите, что вода находится в избытке и ее количество рассчитывать не нужно. Если Вам не удалось установить формулы веществ, вычислите расход реагентов в молях на получение 1 моль \mathbf{K} .

) Газ **X** является побочным продуктом другого крупнотоннажного химического производства. Напишите уравнение реакции, ведущей к его образованию.

Задача 9-2

Элемент X распространён в природе, входит в состав драгоценных и полудрагоценных камней. При высоких температурах X реагирует с водой (p-u 1) и аммиаком (p-u 2) с выделением одного и того же газа. В результате реакций, кроме газа A, также образуются вещества B B, соответственно.

Вещество Б может быть получено в виде нанотрубок. Для этого навеску соли Γ (m = 991 мг) растворяют в воде, к полученному раствору добавляют гидроксид натрия ДО растворения выделяющегося осадка Д (р-ции 3 и 4), а затем добавляют поверхностно-активное вещество, помещают раствор в автоклав и нагревают до 120 °C. При этом образуется Е в виде нанотрубок (*p-ция* 5). При медленном нагревании E до 520 °C можно получить нанотрубки вещества **Б** (m = 180 мг, выход – 86% из Γ в расчёте на X), которые обладают высокой каталитической активностью.

идеализированная гексагональная элементарная ячейка ${f B}$ $a=b=3.021~{\mathring A},$ $c=5.082~{\mathring A},~\gamma=120^\circ$

Вещество **Ж** образуется при медленном нагревании 591 мг **X** со стехиометрическим количеством хлорида аммония **(р-ция 6)** до 350°C в атмосфере аргона (объем реакционного сосуда 30 мл, заполняли аргоном при н.у.). После завершения реакции плотность газовой смеси по аргону в реакционном сосуде составляет 0.0877. Вещество **Ж** представляет собой чувствительные к влаге кристаллы с ионной структурой, содержащие в составе однозарядные катион и анион. Плотность **Ж** составляет 3,434 г/см³, объём элементарной ячейки – 356,96 Å³, число формульных единиц на элементарную ячейку – 2.

Вопросы:

1) Назовите металл X и вещества A - E, состав подтвердите расчетом. Все соединения стехиометрические.

^{*} Необходимо для формирования нанотрубок, в реакции не участвует.

- 2) Напишите уравнения реакций 1–5.
- 3) Предложите состав \mathbf{X} . Ответ подтвердите расчётом. Изобразите схематично возможные изомеры катиона и аниона, если координационное число \mathbf{X} в катионе и анионе равно 6.
- 4) Запишите уравнение реакции образования **Ж** (*p-ция 6*) и взаимодействия **Ж** с водой (*p-ция 7*).
- 5) Рассчитайте давление в реакционном сосуде после завершения реакции образования **Ж** и охлаждения сосуда до 25 °C.
- 6) Вычислите плотность **В.**

Справочная информация:

a64, H=a63, где R - радиус сферы, описанной вокруг правильного тетраэдра, H - высота тетраэдра, a - длина ребра тетраэдра. $1\cdot 10^{-10}$ м

Задача 9-3

=

Препарат «Охопе», представляющий собой смесь трёх бесцветных солей элемента, при этом X_1 и X_2 имеют одинаковый качественный состав. Кристаллики каждой из трёх солей окрашивают пламя в фиолетовый цвет. Некоторые другие свойства солей представлены в таблице ниже.

Соль	X_1	X ₂	X ₃
Температура плавления, °С	разлагается до плавления		
Среда водного раствора	нейтральная, меняется на кислую при хранении	кислая	нейтральная

Для количественного анализа смеси приготовили 225.0 мл водного раствора, содержащего 0.901 г «Охопе» (далее **раствор 1**).

Для определения содержания соли X_1 в смеси использовали следующий метод. К аликвоте 20.0 мл раствора 1 добавили 10.0 мл серной кислоты и 5.0 мл 20%-го (по массе) раствора иодида калия. После этого полученный раствор бурого цвета титровали 0.0500 М раствором $Na_2S_2O_3$. На титрование ушло 10.4 мл раствора тиосульфата натрия.

Для определения содержания соли X_2 аликвоту **раствора 1** объёмом 20.0 мл быстро титровали 0.0100 М раствором гидроксида натрия. На

титрование уходит 13.0 мл раствора NaOH.

Длительное нагревание третьей порции **раствора 1** объёмом 50.0 мл привело к выделению небольшого количества газа, в котором вспыхивает тлеющая лучина. По окончании выделения газа к полученному раствору добавили избыток раствора нитрата бария, что привело к выпадению осадка, который отфильтровали, промыли раствором соляной кислоты и высушили. Масса осадка после прокаливания составила 0.304 г.

Дополнительно измерили pH 1%-го (по массе) раствора препарата Oxone» в воде, он оказался равен 2.3.

Установите состав солей $X_1 - X_3$ и их массовое содержание (в %) в препарате реакций, которые были использованы при количественном анализе.

Изобразите структурные формулы кислот, которые образуют соли $X_1 - X_3$ и качественно укажите их силу по каждой ступени (сильная, средней силы или слабая).

Определите объём газа (при н.у.), который выделился при длительном нагревании 50 мл раствора 1.

<u>Примечание</u>: в расчётах используйте молярные массы с точностью до сотых долей г/моль.

<u>Задача 9-4</u>

С твердым бинарным веществом \mathbf{X} коричневого цвета провели ряд опытов, заключающихся в нагревании его в токе различных газов. Опыты сведены в таблицу с изменением массы полученного твёрдого остатка и наблюдениями.

№ опыта	условия	изменение массы, %	цвет продукта
	Ar, 1000°C	0	черный
	Cl ₂ , 800°C	-31.8	белый*
	H ₂ O, 500°C	+36.4	белый
	NH ₃ , 800°C	+6.1	серый**
	O ₂ , 800°C	?	белый
	H ₂ , 400°C	0	без изменений
	SO ₃ , 700°C	+36.4	белый

^{*} в холодной части прибора сконденсировалась бесцветная жидкость \mathbf{Y} , дымящая на воздухе

^{**} в холодной части прибора сконденсировалась бесцветная жидкость

При взаимодействии \mathbf{Y} с SO_3 при 300°C образуется бесцветная жидкость *р-ция* $\mathbf{8}$), наименее летучий компонент \mathbf{Z} которой содержит 5.61% кислорода по массе. Вещество \mathbf{X} взаимодействует с раствором гидроксида натрия \mathbf{p} - \mathbf{q} \mathbf{u} \mathbf{s} \mathbf{g} \mathbf{g}

Вопросы:

- 1. Предложите, как изменится масса навески в 5 опыте. Ответ обоснуйте.
- 2. Определите неизвестные вещества (X, Y, Z), ответ подтвердите расчетом.
- 3. Запишите уравнения реакций, протекающих в описанных опытах. Образование продуктов обоснуйте, подтвердите расчётом.
- 4. Запишите уравнения реакций 8 10.

<u>Задача 9-5</u>

Энергетика организма

Физиологические потребности в энергии взрослого человека, находящегося в полном покое в тёплой комнате, составляют около ккал/сутки.

<u>Указание</u>: в ответах на вопросы обязательно приводите формулы, используемые вами для расчётов, и расчёты. Учтите, что ответ без расчётов не засчитывается.

Предполагая, что основная часть этой энергии выделяется в виде теплоты, рассчитайте излучаемую человеком теплоту в ваттах (1 BT = 1 Дж/c).

Предполагая, что эта энергия образуется за счёт окисления глюкозы до диоксида углерода и воды, рассчитайте минимально необходимую массу глюкозы, расходуемой в сутки.

Сколько молей кислорода требуется для окисления этой массы глюкозы в сутки?

Сколько вдохов в минуту минимально требуется человеку для такого окисления? Считайте, что дыхательный объём лёгких человека при спокойном дыхании составляет 0.5 л и что воздух имеет давление 1 атм и температуру воздухе, поглощается лёгкими.

Какую работу (в Дж) за минуту совершают мышцы грудной клетки при дыхании для расширения на 0.5 л против внешнего давления 1 атм при минимальном числе вдохов?

Какую массу воды теряет человек с воздухом в процессе дыхания при минимальном числе вдохов за 1 час? Считайте относительную влажность вдыхаемого воздуха равной 40 %, а выдыхаемого воздуха — 100 %. Температуру вдыхаемого и выдыхаемого воздуха примите равной 25 °C и 37 °C, соответственно. Изменением объёма воздуха при нагревании пренебрегите. Давление насыщенного пара рѕ воды при 25 °C и 37 °C равно 3.17 кПа и

Справочная информация:

1 кал = 4.184 Дж.

Содержание кислорода в воздухе составляет 21 % по объёму.

Энтальпии образования:

Вещество	$\Delta_{\mathrm{f}}H$, кДж/моль
Глюкоза С ₆ Н ₁₂ О ₆	-1260
(L)	-394
О (ж)	-286

Работа расширения равна произведению давления, против которого происходит расширение, на изменение объёма при расширении.

Относительная влажность воздуха (ϕ) — это отношение парциального давления водяного пара в воздухе к равновесному давлению насыщенного водяного пара при данной температуре.

Десятый класс

Проверке подлежит только лицевая сторона бланка ответа! Все численные результаты должны быть подтверждены расчетом, хотя бы коротким. Все качественные ответы должны иметь обоснование, хотя бы короткое. В противном случае оценка 0 баллов.

Задача 10-1

Азы получения одного металла

Получение тугоплавкого металла **M** обычно проводят восстановлением его соединения **X** магнием: $\mathbf{X} + 2\mathrm{Mg} \xrightarrow{t} \ldots$, хотя исторически первым способом его выделения в чистом виде было взаимодействие с натрием, в ходе которого реакционная смесь сильно нагревается (в реакции с 10 г **X** выделяется 49.9 кДж теплоты):

$$X + 4Na \xrightarrow{t} \dots$$

Кроме того, были попытки его получения из \mathbf{X} восстановлением водородом по реакции: $\mathbf{X} + 2\mathbf{H}_2 \xrightarrow{t} \dots$

Все эти реакции проводятся при высоких температурах (выше 700 °C). Температурный режим проведения процессов термодинамически определяется изменениями энергии Гиббса этих реакций (в Дж/моль), которые зависят от температуры (в К) следующим образом (порядок зависимостей не совпадает с порядком описания реакций в тексте):

$$\Delta G^{\circ} = 366900 - 150T$$
, $\Delta G^{\circ} = -540600 + 188T$, $\Delta G^{\circ} = -946400 + 273T$.

Соотнесите зависимости энергии Гиббса от температуры с описанными в задаче реакциями. Ответ объясните.

- . Определите металл **М** и соединение **X**. Ответ объясните расчётом.
- . Какой из трёх процессов требует наибольшей температуры? Рассчитайте, при какой минимальной температуре он будет протекать при стандартных давлениях компонентов.

В качестве альтернативного лабораторного способа получения небольших порций \mathbf{M} предложена реакция оксида \mathbf{M} с твердым веществом \mathbf{Y} . В твердой смеси продуктов присутствует \mathbf{M} и основный оксид, использовавшийся ещё в

Древнем Риме для получения цемента, его удаляют промывкой смеси соляной кислотой. Также при взаимодействии 1.000 г оксида **M** с 1.054 г **Y** образуется 0.241 л газа (при 900°C и 10 атм).

. Определите формулу **Y**, запишите уравнение реакции получения **M**. Ответ объясните расчётом.

Получение восстановлением водородом этого металла не является предпочтительным, так как М способен образовывать довольно устойчивые гидриды нестехиометричного состава MH_x . Образец MH_x массой 5.00 г В избытке растворили соляной кислоты полностью (реакция Образовавшийся в результате окрашенный раствор со временем на воздухе побледнел (реакция 2). Для количественного определения содержания М в этом растворе побледневший раствор выдержали некоторое время над металлическим цинком (peakuus 3), после чего отобрали из полученного раствора одну десятую часть и оттитровали раствором перманганата калия . На титрование ушло 19.68 мл 0.1024 М раствора КМпО₄.

. Рассчитайте состав MH_x . Запишите уравнения *реакций* 1-4. Ответ подтвердите расчётом.

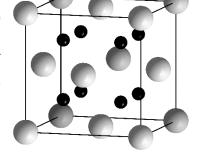
Задача 10-2

Повесть о далёком страннике...

The mountains are calling and I must go.

Комплексные соединения играют в современной неорганической химии поистине огромное значение и не перестают поражать учёных своим разнообразием. Для получения одного из примечательных представителей

данного класса - вещества ${\bf Z}$ - можно использовать следующую схему, выбрав в качестве исходных соединений простые вещества ${\bf X}$ и ${\bf Y}$.


Виновный, согласно легенде, в отравлении сотен норвежских плавильщиков руды серебристый металл ${\bf X}$ вводят в реакцию с хлором при температуре 800° C, при этом образуется бинарное вещество ${\bf A}$ голубого

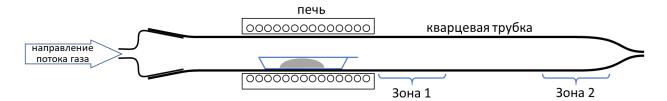
цвета (*р-ция* 1), взаимодействие которого с газообразным аммиаком, сопровождающееся увеличением массы образца на 78,5%, приводит к кристаллическому соединению **В** (*р-ция* 2), содержащему 30,612% хлора по массе и являющемуся исходным для синтеза многих комплексных соединений данного элемента.

При длительном пропускании кислорода через водный раствор **В** и хлорида аммония в присутствии активированного угля (катализатор) образуется вещество **С** (*p-ция* 3), выделяющееся из раствора в виде оранжевожёлтых кристаллов. Интересно, что в отсутствии катализатора осадок не выпадает, а при подкислении соляной кислотой этого раствора кристаллизуется красно-розовое соединение **D** (*p-ция* 4). Известно, что при добавлении к равным объёмам изомолярных растворов **С** и **D** избытка нитрата серебра в первом случае масса выделяющегося белого осадка в 1,5 раза больше, чем во втором.

Окисление тяжёлого серебристого металла Y на воздухе при повышенной температуре приводит к бинарному веществу E (*p-ция* 5), которое

кристаллизуется в кубической элементарной ячейке, представленной на рисунке (a = 5,3947 Å, $\rho = 11380 \text{ кг/м}^3$). Твердофазное взаимодействие **E** и надпероксида калия при высокой температуре позволяет получить соединение **F** (*p-ция* 6), содержащее 26,956% калия по массе, при растворении которого в воде образуется

зелёный раствор вещества **G** (*p-ция* 7), анион которого имеет форму искажённого октаэдра и обладает нулевым дипольным моментом.


Для получения игольчатых кристаллов соединения \mathbf{Z} , содержащих 11,078% металла \mathbf{X} по массе, к 0,005 M раствору \mathbf{G} в 4,9 M LiOH добавляли избыток 0,100 M водного раствора вещества \mathbf{C} и выдерживали в холодильнике 24 ч.

Вопросы и задания:

- 1) Установите формулы веществ **A**-**G** и комплексного соединения **Z**, определите металлы **X** и **Y**. Ответ подтвердите расчётами.
- 2) Напишите уравнения реакций 1-7.

- 3) Определите координационные числа (к.ч.) и координационные полиэдры (к.п.) атомов в кристаллической структуре **E**.
- 4) Приведите структурную формулу аниона вещества ${\bf G}$ и изобразите все возможные его изомеры.

Задача 10-3

С твердым бесцветным кристаллическим веществом **X** провели ряд опытов. Для этого навески этого вещества помещали в лодочку внутрь трубчатой печи (см. рисунок), в которой постепенно повышали температуру, доводя ее до указанной. Затем печь охлаждали в инертной атмосфере, лодочку вынимали и фиксировали изменение массы. В ходе описанных опытов материал лодочки никак не изменяется. Было проведено 6 опытов, отличающихся газовой атмосферой внутри печи и максимальной температурой нагрева. В **опыте 4** в печь в токе нагретого инертного газа подавали пары серы. Результаты опытов сведены в таблицу:

No		изменение	Наблюдения				
опыта	условия	массы, %	остаток в лодочке	Зона 1	Зона 2		
	C	-100		коричневые	оранжевые		
	1	-100	_	кристаллы	кристаллы		
	0		перший	_	тёмно-серые		
			черный –		кристаллы		
	Н	-88.2	серый	_	тёмно-серые		
		-88.2	серыи	-	кристаллы		
					тёмно-серые и		
	A	-81.4	черный	_	жёлтые		
	r				кристаллы		
	HF,		белый		тёмно-серые		
	800°C		ОСЛЫИ	_	кристаллы		
	Ar, 200°C	-34.6	белый*	_	_		

^{*} при сгорании в кислороде газа на выходе из реактора образуется смесь веществ, часть из которых поглощается раствором Ca(OH)₂.

Вопросы:

- **1.** Определите состав соединений, остающихся в лодочке после проведения опытов 2-6, состав коричневых кристаллов в опыте 1, а также вещество **X**. Ответ подтвердите расчётами.
- **2.** Запишите уравнения реакций, протекающих в опытах 1 6.
- **3.** Запишите уравнения реакций, последовательно происходящих в водном растворе вещества \mathbf{X} при постепенном добавлении хлорной воды. Какова будет окраска конечного раствора?

<u>Задача 10-4</u>

Для лечения повреждений кожи широко применяется препарат Π антенол, действующим веществом которого является декспантенол, или пантотенол — (R)-2,4-дигидрокси-N-(3-гидроксипропил)-3,3-диметилбутанамид. Данное соединение является производным витамина B5 — пантотеновой кислоты. Препараты данной группы интенсивно исследуются с момента их открытия в 1934 году.

1. Приведите структурную формулу пантотенола.

В настоящее время существует несколько подходов к синтезу пантотенола. Один из них, основанный на доступных реагентах, приведён ниже.

A + B
$$\xrightarrow{\text{NaOH}}$$
 C $\xrightarrow{\text{H}_2, \text{Ni}}$ D $\xrightarrow{\text{пантотенол}}$ D $\xrightarrow{\text{пантотенол}}$ H $\xrightarrow{\text{NaOH}}$ C $\xrightarrow{\text{I}_2, \text{Ni}}$ D $\xrightarrow{\text{пантотенол}}$ H $\xrightarrow{\text{I}_2, \text{Ni}}$ D $\xrightarrow{\text{пантотенол}}$ H $\xrightarrow{\text{I}_2, \text{Ni}}$ D $\xrightarrow{\text{I}_3, \text{NaOH}}$ D $\xrightarrow{\text{I}_4, \text{NaOH}}$ D

[Rh*] - хиральный комплекс родия

Известно, что эквимолярная газообразная смесь реагентов \mathbf{A} и \mathbf{B} имеет плотность по водороду 17.75, а соединения \mathbf{G} и \mathbf{H} – гетероциклические.

2. Приведите структурные формулы соединений ${\bf A} - {\bf H}$.

Приведённый на схеме способ асимметрического гидрирования G на хиральном комплексе родия был предложен японскими исследователями в 1985 году. Этот подход приводит к преимущественному получению H с R-конфигурацией ассимметрического центра, хотя на стадии гидрирования

неизбежно образуется небольшая примесь S-изомера \mathbf{H} . На этапе очистки исследователи оценивали соотношение энантиомеров, измеряя угол вращения плоскости поляризации плоскополяризованного света α (при фиксированной концентрации 10 г/л) и вычисляя энантиомерный избыток ee.

Этап очистки	α	ee
I	-40.8°	80.5%
II	-47.7°	94.27%
III	-49.87°	?

- **3.** Рассчитайте энантиомерный избыток продукта после третьего этапа очистки.
- **4.** Каков будет угол поворота плоскости поляризации α : а) у 100% Rэнантиомера **H**; б) у 100% S-энантиомера **H**; в) у эквимолярной смеси
 энантиомеров **H**; г) у смеси с ee = 20%?

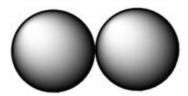
Примечания: Энантиомерный избыток — характеристика смеси энантиомеров, рассчитываемая по формуле: $ee(\%) = 100 \cdot \frac{\chi_R - \chi_S}{\chi_R + \chi_S}$, где χ — мольная доля соответствующего энантиомера.

Задача 10-5

Жизненно важная неорганика

Живые организмы состоят, помимо воды, в основном из органических веществ. Однако многие исключительно важные ферментативные процессы протекают только в присутствии неорганических ионов, а некоторые процессы осуществляются самими ионами металлов в составе ферментов.

Выделенная из организма быков супероксиддисмутаза — фермент, представляющий собой белковую молекулу с четырьмя местами связывания ионов металлов, с двумя из которых эффективно связываются ионы меди, вступая в равновесия:


 \mathbf{C}

В первом приближении можно считать, что молекула Е состоит из двух

Æ

£

одинаковых соприкасающихся шарообразных субъединиц (см. рисунок), каждая из которых содержит по одному эффективному для связывания меди сайту. Большое расстояние между ними обуславливает независимость связывания ионов меди с каждым из них. Молекулярная масса E составляет $3.2\cdot10^4$ г/моль.

. Используя характерную для белков плотность (1.3 г/см³) и приведенное описание формы белка, оцените максимально возможное расстояние между центрами связывания меди (в нм). Считайте, что они расположены на поверхности белка. Приведите расчёты.

Хотя связывание белка с ионами меди двумя одинаковыми сайтами происходит независимо, из-за статистических факторов термодинамически стадии (1) и (2) различны: при 25 °C $\Delta_r G_1$ ° на 3.43 кДж/моль меньше, чем $\Delta_r G_2$ °. Во сколько раз K_1 больше K_2 ? Приведите рассуждения и расчеты.

В раствор при постоянной температуре 25 °C ввели ионы Cu^{2+} (начальная концентрация 100 мкмоль/л) и некоторое количество фермента Е. После установления равновесия концентрация ионов меди, не связанных с ферментом, оказалась в 3500 раз меньше начальной, а несвязанного с медью фермента осталось 1.7 % от начальной его концентрации.

. Рассчитайте константы связывания K_1 и K_2 и начальную концентрацию фермента в растворе.

В серии экспериментов с различной начальной концентрацией ионов меди равновесия в каждом эксперименте равновесная концентрация [Е] была одинакова. После установления равновесия измеряли также [Cu²⁺], которая оказывалась в каждом эксперименте различной. Данные о зависимости c_{Cu} от

 \mathbf{C}

 c_{Cu} от $[Cu^{2+}]$ оказывается линейной? **Клякжевиником бразиржеделуны койнужи вывикимиваныя** запишите выражения для точек пересечения с осями координат.

Медь связывается ферментом почти полностью, что затрудняет исследование равновесий (1) и (2). Для преодоления этого затруднения вместо самих ионов меди (II) берут достаточно устойчивый комплекс CuL_2 , что уменьшает эффективность связывания меди, но увеличивает точность измерения равновесных концентраций.

. Выразите константы равновесия реакций

 \mathbf{C}

 \mathbf{a}

Ь

е Справочная информация: Е

$$p O$$
 $\rightleftharpoons CuE^{*+}_{L} + 2L^{-},$

б Стандартное изменение \overrightarrow{oth} Срими $\Delta_r G^\circ$ связано с **ж**онстантой равновесия:

$$\ddot{e} \qquad \Delta_r G^{\circ} = -RT \ln K.$$

ч

М

 $\mathbf{\Omega}$

Ħ

p

Æ

a

þ

Æ

茰

и —

В

M

 $[{]f p}$ † Константа устойчивости — константа равновесия образования комплексного **g**оединения из иона металла и лигандов в растворе.

Одиннадцатый класс

Проверке подлежит только лицевая сторона бланка ответа! Все численные результаты должны быть подтверждены расчетом, хотя бы коротким. Все качественные ответы должны иметь обоснование, хотя бы короткое. В противном случае оценка 0 баллов.

Задача 11-1

«Цепи и кольца»

В реакции ионных при н.у. неорганических веществ X и Y в эквимолярном соотношении основными продуктами являются вещества, имеющие циклическое строение, состоящие из повторяющихся звеньев, включающих три элемента A, B и C. Для синтеза цикла нужного размера подбирают условия реакции (растворитель/температура). Если для реакции брать небольшой избыток X, образуются вещества линейного строения, их цепь состоит из тех же звеньев, а начало и конец цепи не замыкаются вследствие присоединения к ним фрагментов молекулы X. Если же взять небольшой избыток вещества Y, то возможно образование трициклического продукта.

Состав представителя каждого вида продуктов (веществ):

Π

þІ

Ы

р Вещество **3** содержит на четыре атома **B** больше, чем вещество **1**.

меорганических солей 4 (содержит A) и 5 (содержит C) и газ 6 с резким запахом колержит B). Гидролиз 1 в нейтральной среде протекает ступенчато, без мазрушения цикла вплоть до вещества 7 (четырехэлементное соединение, не модержит A). В соли 4 анион тот же, что и в Y.

(Каждое из веществ X и Y способно обратимо разлагаться при нагревании, ве давая твёрдого остатка.

R

И

8

Б

Вопросы:

- 1. Определите элементы A, B, C и формулы веществ X, Y, 1 7. Ответ подтвердите расчётом.
- 2. Для вещества 1 запишите уравнения реакции синтеза и взаимодействия с избытком КОН.
- 3. Приведите формулу вещества, содержащего n атомов \mathbf{B} , принадлежащего κ
- а) линейных продуктов (в избытке **X**), б) трициклических продуктов (в избытке **Y**).
- 4. Изобразите структурные формулы веществ 1, 2, 3 и 7.

o

M

<u>Задача 11-2</u>

В очередной раз оказавшись в Стране Чудес, Алиса спешила на чаепитие к своим друзьям. Путь ей преградил столик с тремя баночками с потёртыми о наклейками, надписи на которых были одинаковы — «Хлорид молибдена», а рядом нарисованы буквы — X, Y и или Z. На бумажке рядом с баночками было написано: ч «Хлориды содержат одинаковые структурные мотивы. е Чтобы попасть на чаепитие к Шляпнику, тебе надо с определить состав и строение хлоридов X — Z». Рядом

определить состав и строение хлоридов $\mathbf{X} - \mathbf{Z}$ ». Рядом стояли уже знакомый к ей бутылёк с уменьшающей жидкостью, увеличивающая булочка и лежала о мерцающая линейка.

- И что мне со всем этим делать? задумалась Алиса. Химию она знала уприлично, но проводить качественное определение хлоридов молибдена без дополнительных реагентов и данных она не могла никак. Рядом с ней ратериализовалась улыбка Чеширского Кота, который промурлыкал: «EXAFS».
- $^{
 m M}$ A что такое EXAFS? спросила Алиса. Её пугали такие аббревиатуры они никогда до добра не доводили.

ў ‡

 $^{^{\}ddagger}$ Гомологический ряд - группа химических соединений одного структурного типа, отличающихся друг от друга по составу на определённое число повторяющихся структурных единиц

Это метод, в котором по поглощению рентгеновских лучей можно измерить расстояния между атомами в кристаллах, жидкостях и даже газах!
 Так можно понять качественный и количественный состав индивидуальных веществ и смесей.

Поглядев на линейку и бутылёк, Алиса придумала план. Взяв в руки линейку, она выпила порцию жидкости из бутылька, уменьшилась и попала в наномир. Всё резко потемнело, она видела лишь очертания атомов и электронных облаков. Наконец она сориентировалась, достала линейку и начала измерять расстояния между атомами в структуре. Расстояния получились такие:

Типы расстояний в ${f X}$	$Mo - Mo^{\S}$	Mo – Cl
Межатомные расстояния, Å	8	4–2.26 4

Рассчитайте координационное число атомов молибдена в хлориде X. Определите формулу X; <u>приведите рассуждения</u> (они будут оцениваться!). Изобразите структурную формулу формульной единицы хлорида X.

Предложите условия синтеза Х из молибдена, напишите уравнение реакции.

Справившись с X, Алиса отправилась мерить расстояния в Y. Он состоял из крупных молекул; расстояния между атомами молибдена и хлора в их составе оказались следующие:

Типы расстояний в Ү	Mo – Mo	Mo – Cl
Межатомные расстояния, Å		- 2.51

Определите формулу хлорида Y, <u>приведите рассуждения</u> (они будут оцениваться!). Нарисуйте структурную формулу молекул Y (или опишите её словами).

 $[\]S$ Здесь и далее приведены только ближайшие межатомные расстояния каждого типа. Справа от расстояний приведено их количество на один атом молибдена. При измерении Алиса выбирала в молекуле один атом молибдена и измеряла ближайшие расстояния каждого типа в пределах данной молекулы (расстояния и их количества приведены в таблицах). Вещества X - Z содержат по одному типу атомов молибдена.

Для вещества \mathbf{Y} характерен полиморфизм**. С учётом регулярного полимерного строения второго полиморфа \mathbf{Y} , предложите возможные структуры для него (укажите строение возможных мономерных звеньев).

Предложите способ получения Y из X, напишите уравнение реакции.

Баночка с веществом **Z** стояла в кристаллизаторе с ацетоном и сухим льдом. Чтобы не замёрзнуть, Алиса быстренько промерила все ближайшие расстояния в **Z**; Мо – Сl были равны ~2.3 Å, Мо – Мо были равны ~6.0 Å. Съев припасённую увеличивающую булочку, Алиса вернулась на столик. В траве рядом она нашла лежащие рядом обрывки записей, описывающие процедуру синтеза **Z**, которые помогли окончательно понять картину:

Во фторопластовой ампуле охладили жидким азотом 3.0 г трихлорида бора, после чего добавил 0.3 г фторида молибдена. После нагревания смеси до – газовыделения) удалось выделить **Z**».

Разрешив задачку, Алиса смогла добраться до друзей и выпить с ними вкусного чаю.

Напишите формулу фторида молибдена, который был использован для синтеза реакции синтеза **Z**. Предложите метод синтеза этого фторида молибдена из простых веществ, напишите уравнения реакций.

Задача 11-3

Инсектициды – химические препараты, применяющиеся для уничтожения различных видов насекомых, — массово начали использоваться в конце первой половины XX века. В настоящее время известно большое количество классов и поколений инсектицидов.

Фенотрин, также называемый сумитрином — один из первых инсектицидов, получивший широкое распространение в быту. Он представляет собой синтетический пиретроид первого поколения, который убивает взрослых

^{**} Полиморфизм — способность вещества существовать в различных кристаллических структурах. Простейшим примером полиморфизма является аллотропия фосфора или серы.

блох и клещей, проникая в организм насекомого через кожу. Также он использовался для уничтожения головных вшей у людей. *Фенотрин* применяется как компонент аэрозольных инсектицидов и в наши дни, год за годом подтверждая свою эффективность. *Фенотрин* (**X**) может быть получен согласно приведённой ниже схеме.

Приведите структурные формулы соединений $\mathbf{N} - \mathbf{S}$.

Задача 11-4

В органическом синтезе существует много методов построения функционализированных циклопентановых систем. Первые такие методы основывались на модификации ацетоуксусного и малонового эфиров. Примеры использования этих методов приведены ниже. Учтите, что при нагревании вещества С в щелочном растворе иода выпадает жёлтый осадок G.

Расшифруйте представленные схемы, изобразив структурные формулы веществ ${\bf A} - {\bf G}$.

Более популярный метод получения циклопентановых систем основан на замыкании дикетонов с помощью реакций конденсации. Такой подход использовался при синтезе диастереомерных сесквитерпенов (±)-акорона и (±)-изоакорона из 4-метилциклогекс-3-енкарбальдегида американскими учёными в 1978 году. Схема этого синтеза приведена ниже.

Изобразите структурные формулы веществ $\mathbf{H} - \mathbf{L}$ и (±)-акорона без учёта стереохимии.

В начале 1970-х годов Посоном и Кхандом были проведены исследования аддуктов алкинов с простейшим карбонилом кобальта $Co_x(CO)_y$. Из таких аддуктов можно получать важные соединения по реакции, названной в честь этих исследователей. Например, из этилена и гептина-1 с выходом 48% можно

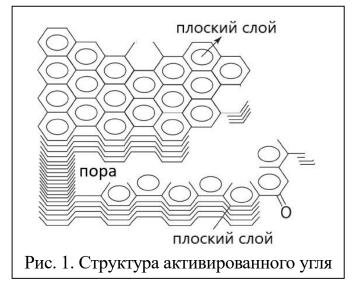
получить вещество **М**, содержащее пятичленный цикл – предшественник важного для парфюмерной промышленности душистого вещества *метилдигидрожасмоната*.

метилдигидрожасмонат

Определите индексы x и y в формуле простейшего карбонила кобальта, зная, что он удовлетворяет правилу 18 электронов.

Изобразите структурные формулы веществ **М** и **N**.

Задача 11-5


Активированный уголь против парниковых газов

Один из способов связывания парниковых газов — адсорбция на активированном угле. Последний представляет собой высокопористое вещество, получаемое из природного сырья путем карбонизации и активации. При карбонизации (пиролизе) происходит удаление кислорода и водорода из органических веществ, а оставшиеся атомы углерода образуют конденсированные ароматические фрагменты, имеющие плоское строение. Эти фрагменты перекрываются и накладываются друг на друга, образуя

многочисленные поры (рис. 1).

Предположите, какие газы из перечисленных — водород, метан, угарный газ, углекислый газ, фтор — хорошо адсорбируются активным углем? Кратко объясните.

Будем считать, что активированный уголь имеет структуру графита, искаженную многочисленными порами.

Плотность графита 2.23 г/см^3 , плотность угля 0.80 г/см^3 .

Рассчитайте общий объем пор в одном грамме угля.

Удельная поверхность угля — очень большая, около $1600 \text{ м}^2/\text{г}$. Эта величина практически равна внутренней поверхности пор. Считая, что все поры представляют собой одинаковые цилиндры диаметра d и длины l >> d (рис. 2), рассчитайте диаметр пор.

Активированные угли довольно быстро адсорбируют углекислый газ. Процесс

(

хорошо описывается киретикой первого порядка: $n_{\text{адс}}(t) = n_{\text{max}} \cdot (1 - e^{-kt}), \ _{(\Gamma)} \to \text{СQ}_{\text{2(адс)}} \qquad n_{\text{адс}} - \text{количество}$

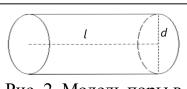


Рис. 2. Модель поры в активированном угле

адсорбированного газа, $n_{\rm max}$ – предельная адсорбция при данном давлении, k – опытная константа скорости. На одном из активированных углей за 20 с адсорбировалось 40 % газа при 298 К и 55 % при 343 К.

- а) Рассчитайте энергию активации адсорбции.
- б) За какое время выход адсорбции составит 99 % при 298 К?
- **в)** Равновесие $CO_{2(r)} \rightleftarrows CO_{2(aдc)}$ при нагревании смещается влево. Сравните

между собой энергии активации адсорбции и десорбции и объясните результат.

Интересное влияние на адсорбцию углекислого газа на угле оказывает вода. При низких давлениях газа она затрудняет адсорбцию, а при высоких – усиливает ее (рис. 3). Дайте разумное объяснение обоим эффектам.

Объем цилиндра: $V = \pi d^2 l/4$

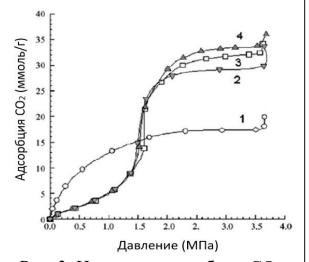


Рис. 3. Изотермы адсорбции CO₂ на сухом угле (1) и на влажных углях (2-4) при 275 К

Площадь поверхности длинного цилиндра (l>>d): $S=\pi dl+\pi d^2/2\approx\pi dl$ Уравнение Аррениуса: $k(T)=Ae^{-E_a/(RT)}$

Таблица ионных радиусов, Å

Ион	КЧ*	Радиус	Ион	кч*	Радиус	Ион	кч*	Радиус
							6(HC)	
				4	75			
				4(BC)				
				6(BC)				
				6(HC)				
				6(BC)				
				6(HC)				
				6(BC)				
				6(HC)			4(BC)	
							4(BC)	
							6(BC)	
							6(HC)	
							8(BC)	
							4(BC)	
							6(BC)	
							6(HC)	
							8(BC)	

Ион	кч*	Радиус	Ион	кч*	Радиус	Ион	кч*	Радиус
				4(BC)				
				5(BC)				
				6(BC)				
				6(HC)			6(BC)	
				6(BC)			6(HC)	
				6(HC)			6(HC)	
								0
		0						
		0						
								0

Ион	кч*	Радиус	Ион	кч*	Радиус	Ион	кч*	Радиус
								0
								0
		0						
		0						
		0						
		0						
		0						

^{* -} КЧ — коордиационное число, ВС- высокоспиновое, НС — низкоспиновое состояние, $1 \text{Å} = 10^{-8} \text{см}$