Код

ПРОЕКТ

Всероссийская проверочная работа

по профильному учебному предмету «ХИМИЯ»

для обучающихся по программам среднего профессионального образования, завершивших в предыдущем учебном году освоение общеобразовательных предметов, проходящих обучение по очной форме на базе основного общего образования.

Образец

Инструкция по выполнению работы

Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

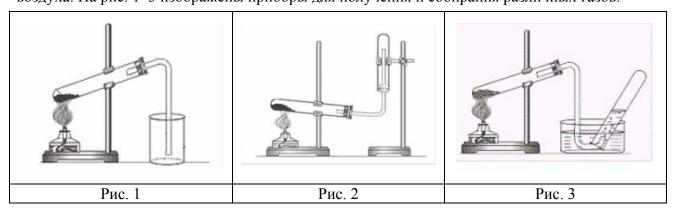
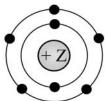

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Сумма баллов	Отметка за работу
Баллы																	

КОД	К	0	Д
-----	---	---	---

1 Из курса химии Вам известно, что при получении газообразных веществ в лаборатории собирать получаемый газ можно двумя способами: вытеснением воздуха. На рис. 1—3 изображены приборы для получения и собирания различных газов.


Определите, какие из указанных приборов можно использовать для получения и собирания в лаборатории:

- а) аммиака;
- б) хлороводорода.

Запишите в таблицу номер рисунка и название соответствующего способа собирания газа.

Название газа	Номер рисунка	Метод сбора газа
Аммиак		
Хлороводород		

(2) На рисунке изображена модель электронного строения атома некоторого химического элемента.

На основании анализа предложенной модели выполните следующие задания:

- 1) определите химический элемент, атом которого имеет такое электронное строение;
- 2) укажите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот химический элемент.

Ответы запишите в таблицу.

Ответ: Символ № № Металл/ химического периода группы неметалл элемента

ВПР СПО. Завершившие СОО. Химия. Образец

Код

(3) Периодическая система химических элементов Д.И. Менделеева – богатое хранилище информации о химических элементах, их свойствах и свойствах их соединений. Так, например, известно, что с увеличением порядкового номера химического элемента радиусы атомов в периодах уменьшаются, а в группах увеличиваются.

Учитывая эти закономерности, расположите в порядке уменьшения радиуса атомов следующие элементы: B, Al, C, N. Запишите символы элементов в нужной последовательности.

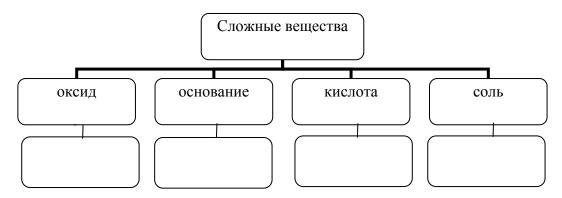
:		
	\sim	
	()TDAT	
:	OIBCI.	
:		

В приведённой ниже таблице перечислены характерные свойства веществ с молекулярной и атомной кристаллической решёткой.

Характерные сво	йства веществ
С молекулярной кристаллической	С атомной кристаллической
решёткой	решёткой
• При обычных условиях могут	• Твёрдые;
находиться в одном из трёх	• прочные;
агрегатных состояний;	• тугоплавкие;
• имеют низкие значения температур	• нелетучие
кипения и плавления;	
• имеют низкую теплопроводность;	
• летучие	

Используя данную информацию, определите, какую кристаллическую решётку имеет: 1) углекислый газ (CO₂);

- 2) алмаз (С).
 - 1) углекислый газ (СО2) _____
 - 2) алмаз (С) _____


Код

Прочитайте следующий текст и выполните задания 5-7.

Аммиак (NH₃) в промышленности получают взаимодействием азота и водорода при температуре 400–450°C под давлением в присутствии катализатора. В лаборатории аммиак можно получить, например, взаимодействием хлорида аммония (NH₄Cl) со щелочами (например, Ca(OH)₂). Аммиак – газ с характерным резким запахом, очень хорошо растворяется в воде. Водный раствор аммиака называется аммиачная вода или нашатырный спирт. С его помощью можно привести в чувство человека при обмороке, хирурги обрабатывают им руки перед операцией. Помимо того, этот препарат нашёл широкое применение в косметологии.

Аммиак легко взаимодействует с кислотами, образуя соли аммония. Так, аммиак с азотной кислотой (HNO₃) образует нитрат аммония (NH₄NO₃). За счёт азота в степени окисления –3 аммиак может проявлять восстановительные свойства, взаимодействуя с кислородом, оксидом меди(II) (CuO) или другими окислителями. Аммиак является исходным веществом для получения в промышленности азотной кислоты и азотных удобрений.

Сложные неорганические вещества условно можно распределить, т. е. классифицировать, по четырём группам, как показано на схеме. Используя формулы приведённых в тексте веществ, впишите в схему по одной формуле вещества соответствующего класса.

Ответ:									
2 Укаж	сите с	: каким	тепповым	эффектом	(c	поглошением	ипи	вылелением	теппоть

2. Укажите, с каким тепловым эффектом (с поглощением или выделением теплоты) протекает эта реакция.

Ответ:

3. Расставьте коэффициенты в уравнении реакции.

Ответ: _____

7	1. Составьте молекулярное уравнение упомянутой в тексте реакции между аммиаком и азотной кислотой.
	Ответ:
·······	2. Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.
	Ответ:
8	В исследованной воде из местного колодца были обнаружены следующие катионы металлов $\mathrm{NH_4}^+$, K^+ , Ba^{2+} . Для проведения качественного анализа к этой воде добавили раствор $\mathrm{Na_2SO_4}$.
	1. Какие изменения в растворе наблюдаются при проведении данного опыта (концентрация веществ достаточная для проведения анализа).
	Ответ:
······	2. Запишите сокращённое ионное уравнение произошедшей химической реакции.
	Ответ:
9	Дана схема окислительно-восстановительной реакции.
	$HNO_3 + Cu \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$ 1. Составьте электронный баланс этой реакции.
	Ответ:
	2. Укажите окислитель и восстановитель.
	Ответ:

(10)

Дана схема превращений:

$$Na_2S \rightarrow H_2S \rightarrow SO_2 \rightarrow BaSO_3$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

- 1) _____
- 2) _____
- 3)

Для выполнения заданий 11–13 используйте вещества, структурные формулы которых приведены в перечне:

1)
$$CH_3 - CH - CH_3$$
 2) $CH_3 - CH_2 - CH_2$ 3) $CH_3 - C = CH$ 4) $CH_3 - CH = CH_2$ 5) $CH_3 - CH_2 - C = CH_3$ OH

11 Из приведённого перечня выберите вещества, которые соответствуют указанным в таблице классам/группам органических соединений. Запишите в таблицу структурные формулы соответствующих веществ.

Алкин	Карбоновая кислота

В предложенные схемы химических реакций впишите структурные формулы пропущенных веществ, выбрав их из приведённого выше перечня. Расставьте коэффициенты в полученных схемах, чтобы получились уравнения химических реакций.

2) + Na_2CO_3 \longrightarrow $CH_3-CH_2-C < O < ONa + <math>H_2O + CO_2$

ТОД	Код	
-----	-----	--

Пропанол-1 применяют в качестве растворителя для восков, чернил, природных и синтетических смол, а также для синтеза пропионовой кислоты, пестицидов, некоторых фармацевтических препаратов. Пропанол-1 можно получить в соответствии с приведённой схемой превращений:

$$CH_2$$
 CH_2
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3

Впишите в заданную схему превращений структурную формулу вещества X, выбрав его из предложенного выше перечня. Запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. Запишите название вещества X.

1)

3)_____

раствора. Запишите подробно ход решения задачи.

Одним из важных понятий в экологии и химии является «предельно допустимая концентрация» (ПДК). ПДК – это такое содержание вредного вещества в окружающей среде, присутствуя в которой постоянно, данное вещество не оказывает в течение всей жизни прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не снижает работоспособности человека, не ухудшает его самочувствия и условий жизни. ПДК углекислого газа в воздухе составляет 9 г/м³.

На кухне площадью 6 м² и высотой потолка 3 м, оборудованной газовой плитой, при горении бытового газа выделилось 180 г углекислого газа. Определите, превышает ли концентрация углекислого газа в воздухе данного помещения значение ПДК. Предложите способ, позволяющий снизить концентрацию углекислого газа в помещении.

Ответ:				
_				

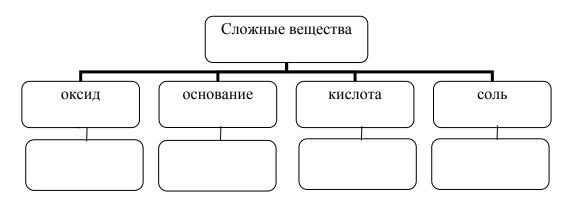
Для изготовления глазных капель используют 3%-ный раствор иодида калия. Рассчитайте массу иодида калия и массу воды, которые необходимы для приготовления 300 г такого

Ответ: _____

Система оценивания проверочной работы по химии

Выполнение заданий 1, 2, 4, 11 оценивается следующим образом: 2 балла — нет ошибок; 1 балл — допущена одна ошибка; 0 баллов — допущены две и более ошибки, или ответ отсутствует.

Верный ответ на задание 3 оценивается 1 баллом.


Номер задания	Правильный ответ			
1	Название газа		Номер рисунка	Метод сбора газа
1	Аммиак		2	Вытеснением воздуха
	Хлороводород		1	Вытеснением воздуха
2	N; 2; 5 (или V); неметалл			
3	$Al \rightarrow B \rightarrow C \rightarrow N$ (или $Al; B; C; N$)			
4	1) Углекислый газ имеет молекулярную кристаллическую решётку. 2) Алмаз имеет атомную кристаллическую решётку			
11	35			

Критерии оценивания выполнения заданий с развёрнутым ответом

Аммиак (NH₃) в промышленности получают взаимодействием азота и водорода при температуре 400–450°С под давлением в присутствии катализатора. В лаборатории аммиак можно получить, например, взаимодействием хлорида аммония (NH₄Cl) со щелочами (например, Ca(OH)₂). Аммиак – газ с характерным резким запахом, очень хорошо растворяется в воде. Водный раствор аммиака называется аммиачная вода или нашатырный спирт. С его помощью можно привести в чувство человека при обмороке, хирурги обрабатывают им руки перед операцией. Помимо того, этот препарат нашёл широкое применение в косметологии.

Аммиак легко взаимодействует с кислотами, образуя соли аммония. Так, аммиак с азотной кислотой (HNO₃) образует нитрат аммония (NH₄NO₃). За счёт азота в степени окисления –3 аммиак может проявлять восстановительные свойства, взаимодействуя с кислородом, оксидом меди(II) (CuO) или другими окислителями. Аммиак является исходным веществом для получения в промышленности азотной кислоты и азотных удобрений.

5 Сложные неорганические вещества условно можно распределить, т. е. классифицировать, по четырём группам, как показано на схеме. Используя формулы приведённых в тексте веществ, впишите в схему по одной формуле вещества соответствующего класса.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)		
Элементы ответа:		
оксид: CuO;		
основание: Са(ОН)2;		
кислота: HNO ₃ ;		
соль: NH4Cl или NH4NO3		
Ответ правильный и полный, содержит все названные выше элементы	2	
Правильно заполнены три ячейки схемы	1	
Допущены две и более ошибки	0	
Максимальный балл	2	

- 1. Составьте молекулярное уравнение реакции получения аммиака из простых веществ.
- 2. Укажите, с каким тепловым эффектом (с поглощением или выделением теплоты) протекает эта реакция.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа: 1) N ₂ + 3H ₂ = 2NH ₃ 2) реакция протекает с выделением энергии (экзотермическая)	
Ответ правильный и полный, содержит все названные выше элементы	2
Ответ включает один из названных выше элементов	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

- 1. Составьте молекулярное уравнение упомянутой в тексте реакции между аммиаком и азотной кислотой.
- 2. Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)		
Элементы ответа: 1) NH ₃ + HNO ₃ = NH ₄ NO ₃ 2) реакция соединения		
Ответ правильный и полный, содержит все названные выше элементы	2	
Ответ включает один из названных выше элементов	1	
Все элементы ответа записаны неверно	0	
Максимальный балл	2	

 $\left(\mathbf{8}\right)$

В исследованной воде из местного колодца были обнаружены следующие катионы металлов: NH_4^+ , K^+ , Ba^{2+} . Для проведения качественного анализа к этой воде добавили раствор Na_2SO_4 .

- 1. Какие изменения в растворе наблюдаются при проведении данного опыта (концентрация веществ достаточная для проведения анализа).
- 2. Запишите сокращённое ионное уравнение произошедшей химической реакции.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)		
Элементы ответа: 1) наблюдается выпадение белого осадка; 2) Ва ²⁺ + SO ₄ ²⁻ = BaSO ₄ ↓		
Ответ правильный и полный, содержит все названные выше элементы	2	
Ответ включает один из названных выше элементов	1	
Все элементы ответа записаны неверно	0	
Максимальный балл	2	

9

Дана схема окислительно-восстановительной реакции.

$$HNO_3 + Cu \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

- 1. Составьте электронный баланс этой реакции.
- 2. Укажите окислитель и восстановитель.
- 3. Расставьте коэффициенты в уравнении реакции.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Составлен электронный баланс:	İ
$2 \mid N^{+5} + \bar{e} \rightarrow N^{+4}$	l
$ \begin{array}{c c} 2 & N^{+5} + \bar{e} \rightarrow N^{+4} \\ 1 & Cu^0 - 2\bar{e} \rightarrow Cu^{+2} \end{array} $	İ
2) Указано, что медь в степени окисления 0 является восстановителем, а HNO ₃	İ
(или азот в степени окисления +5) – окислителем.	i
3) Составлено уравнение реакции:	İ
$4HNO_3 + Cu = Cu(NO_3)_2 + 2NO_2 + 2H_2O$	i
Ответ правильный и полный, содержит все названные выше элементы	3
Правильно записаны два из названных выше элементов ответа	2
Правильно записан один из названных выше элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

(10) Дана схема превращений:

$$Na_2S \rightarrow H_2S \rightarrow SO_2 \rightarrow BaSO_3$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

Содержание верного ответа и указания по оцениванию		
Написаны уравнения реакций, соответствующих схеме превращений:		
1) $Na_2S + 2HCl = 2NaCl + H_2S$		
2) $2H_2S + 3O_2 = 2SO_2 + 2H_2O$		
3) $SO_2 + Ba(OH)_2 = BaSO_3 + H_2O$		
(Допускаются иные, не противоречащие условию задания уравнения реакций.)		
Правильно записаны три уравнения реакций	3	
Правильно записаны два уравнения реакций	2	
Правильно записано одно уравнение реакции	1	
Все уравнения записаны неверно, или ответ отсутствует	0	
Максимальный балл	3	

Для выполнения заданий 11–13 используйте вещества, структурные формулы которых приведены в перечне:

1)
$$CH_3 - CH - CH_3$$
 2) $CH_3 - CH_2 - CH_2$ 3) $CH_3 - C = CH$ 4) $CH_3 - CH = CH_2$ 5) $CH_3 - CH_2 - C = OH_3$

В предложенные схемы химических реакций впишите структурные формулы пропущенных веществ, выбрав их из приведённого выше перечня. Расставьте коэффициенты в полученных схемах, чтобы получились уравнения химических реакций.

1)
$$\cdots \rightarrow CH_3-C-CH_3$$

Содержание верного ответа и указания по оцениванию	Баллы
Элементы ответа:	
1) $CH_3-C\equiv CH + H_2O \longrightarrow CH_3-C-CH_3$	
2) $2CH_3-CH_2-C_{OH}^{O} + Na_2CO_3 \longrightarrow 2CH_3-CH_2-C_{ONa}^{O} + H_2O + CO_2$	
Правильно записаны два уравнения реакций	2
Правильно записано одно уравнение реакции	1
Все уравнения записаны неверно, или ответ отсутствует	0
Максимальный балл	2

(13)

Пропанол-1 применяют в качестве растворителя для восков, чернил, природных и синтетических смол, а также для синтеза пропионовой кислоты, пестицидов, некоторых фармацевтических препаратов. Пропанол-1 можно получить в соответствии с приведённой схемой превращений:

Впишите в заданную схему превращений структурную формулу вещества X, выбрав его из предложенного выше перечня. Запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. Запишите название вещества X.

Содержание верного ответа и указания по оцениванию	Баллы
Элементы ответа:	
Написаны уравнения реакций, соответствующие схеме:	
CH ₂	
1) CH_2 $CH_2 + HCI \xrightarrow{t} CH_3 - CH_2 - CH_2$	
CI	
2) CH ₃ -CH ₂ -CH ₂ + KOH → CH ₃ -CH ₂ -CH ₂ + KCI	
CI OH	
OI OII	
3) Записано название вещества Х: 1-хлорпропан	
Правильно записаны все элементы ответа	3
Правильно записаны два элемента ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно, или ответ отсутствует	0
Максимальный балл	3

(14)

Одним из важных понятий в экологии и химии является «предельно допустимая концентрация» (ПДК). ПДК — это такое содержание вредного вещества в окружающей среде, присутствуя в которой постоянно, данное вещество не оказывает в течение всей жизни прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не снижает работоспособности человека, не ухудшает его самочувствия и условий жизни. ПДК углекислого газа в воздухе составляет 9 г/м^3 .

На кухне площадью 6 м² и высотой потолка 3 м, оборудованной газовой плитой, при горении бытового газа выделилось 180 г углекислого газа. Определите, превышает ли концентрация углекислого газа в воздухе данного помещения значение ПДК. Предложите способ, позволяющий снизить концентрацию углекислого газа в помещении.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Элементы ответа:	
1) Определён объём помещения и определена концентрация углекислого газа	
в нём:	
V (помещения) = $6 \cdot 3 = 18 \text{ м}^3$	
содержание углекислого газа = $180 \Gamma / 18 = 10 \Gamma / M^3$	
2) Сформулирован вывод о превышении ПДК: значение ПДК углекислого газа в помещении превышает показатель 9 г/м ³ .	
3) Сформулировано одно предложение по снижению содержания углекислого газа	
в помещении: замена газового оборудования на электрическое или регулярное проветривание (вентиляция) помещения	
Ответ правильный и полный, содержит все названные выше элементы	3
Правильно записаны два из названных выше элементов ответа	2
Правильно записан один из названных выше элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

(15)

Для изготовления глазных капель используют 3%-ный раствор иодида калия. Рассчитайте массу иодида калия и массу воды, которые необходимы для приготовления 300 г такого раствора. Запишите подробно ход решения задачи.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)		
Элементы ответа:		
1) Рассчитана масса иодида калия:		
$m(иодида калия) = 300 \cdot 0.03 = 9 \Gamma$		
2) Рассчитана масса воды:		
$m(воды) = 300 - 9 = 291 \ \Gamma$		
Ответ правильный и полный, содержит все названные выше элементы	2	
Ответ включает один из названных выше элементов	1	
Все элементы ответа записаны неверно	0	
Максимальный балл	2	

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы – 33.

Рекомендации по переводу первичных баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–10	11–19	20–27	28–33