Система оценивания отдельных заданий и работы в целом

Задания 1-12 оцениваются 1 баллом, если записанный ответ совпадает с эталоном (ответы, представленные в виде обыкновенной дроби, оцениваются 0 баллов – см. инструкцию перед работой).

Задания 13-15 оцениваются на основании критериев, приведённых ниже.

Максимальный балл за всю работу – 18.

Ответы на задания 1-12

№ задания	Ответ
1	-1,3
2	7,5
3	2688
4	10
5	3
6	0,88
7	3780
8	3
9	2,56
10	70
11	3412
12	12

Критерии оценивания заданий 13-15

13

- a) Решите уравнение $\cos 2x + 1 = \operatorname{tg} \frac{2\pi}{3} \cos x$.
- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Решение.

а) Преобразуем уравнение:

$$2\cos^{2} x - 1 + 1 = -\sqrt{3}\cos x;$$

$$2\cos^{2} x + \sqrt{3}\cos x = 0; \cos x(2\cos x + \sqrt{3}) = 0.$$

откуда
$$\cos x = 0$$
 или $\cos x = -\frac{\sqrt{3}}{2}$.

То есть,
$$x = \frac{\pi}{2} + \pi k$$
 или $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

б) C помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

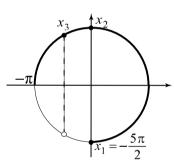
Получим числа:
$$x_1 = -\frac{5\pi}{2}$$
;

$$x_2 = -\pi - \frac{\pi}{2} = -\frac{3\pi}{2};$$

$$x_3 = -\pi - \frac{\pi}{3} = -\frac{4\pi}{3}$$
.

Ответ: a) $\frac{\pi}{2} + \pi k$, $\pm \frac{2\pi}{3} + 2\pi k$, где $k \in \mathbb{Z}$;

6)
$$-\frac{5\pi}{2}$$
; $-\frac{3\pi}{2}$; $-\frac{4\pi}{3}$.



Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах.	
Обоснованно получен верный ответ в пункте а.	
ИЛИ	1
Получены неверные ответы из-за вычислительной ошибки, но при	1
этом имеется верная последовательность всех шагов решения обоих	i
пунктов: пункта a и пункта δ .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	0
Максимальный балл	2

14

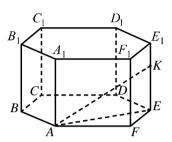
В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1 \quad \text{на ребре} \quad EE_1 \quad \text{отмечена точка} \quad K \quad \text{так, что} \\ EK: KE_1 = 2:1. \quad \text{Найдите угол между плоскостями} \quad A_1B_1C_1 \quad \text{и} \quad ABK \,, \, \, \text{если} \\ AB = 10 \quad \text{и} \quad AA_1 = 6\sqrt{3} \;.$

Решение.

Плоскость ABK образует равные углы с параллельными плоскостями $A_1B_1C_1$ и ABC.

Найдём угол между плоскостью ABK и B плоскостью ABC .

Шестиугольник ABCDEF правильный, поэтому прямые AB и AE перпендикулярны. Значит, по теореме о трёх перпендикулярах, прямые AB и AK также перпендикулярны .



Поскольку плоскости ABC и ABK пересекаются по прямой AB, то угол KAE — линейный угол двугранного угла между плоскостями ABC и ABK. В треугольнике KAE угол AEK равен 90° . Получаем:

$$\operatorname{tg} KAE = \frac{EK}{AE} = \frac{\frac{2}{3}AA_1}{\sqrt{3}AB} = \frac{\frac{2}{3} \cdot 6\sqrt{3}}{10\sqrt{3}} = 0,4.$$

Следовательно, угол между плоскостями $A_1B_1C_1$ и ABK равен $\operatorname{arctg} 0,4$.

Ответ: arctg 0, 4.

Содержание критерия	Баллы
Ход решения задачи верный, получен верный ответ.	2
Ход решения правильный, все его шаги присутствуют, но получен неверный ответ из-за вычислительной ошибки. ИЛИ Решение недостаточно обосновано	
Другие случаи, не соответствующие указанным критериям.	0
Максимальный балл	2

Решите неравенство $\frac{|3x+2|}{2-\frac{3-2x}{3x-2}} \le 0.$

Инструкция:

Решение.

Преобразуем неравенство:

$$\frac{|3x+2|}{\frac{6x-4-3+2x}{3x-2}} \le 0.$$

При $x \neq \frac{2}{3}$ получаем $\frac{|3x+2| \cdot (3x-2)}{8x-7} \leq 0$.

а) Если $3x+2\neq 0$, то $\frac{3x-2}{8x-7}\leq 0$. С учётом условия $x\neq \frac{2}{3}$ и, используя метод интервалов, получаем: $x\in \left(\frac{2}{3};\frac{7}{8}\right)$.

а) Если 3x+2=0, то неравенство $\frac{|3x+2|\cdot(3x-2)}{8x-7}\leq 0$ верно. То есть, $x=-\frac{2}{3}$ является решением неравенства.

Ответ: $\left(\frac{2}{3}; \frac{7}{8}\right), -\frac{2}{3}$.

Содержание критерия	
Обоснованно получен верный ответ.	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
меется верная последовательность всех шагов решения.	
Решение не соответствует ни одному из критериев, перечисленных	
выше.	U
Максимальный балл	2