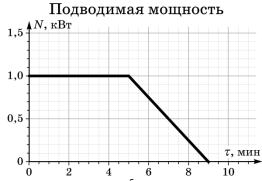
Физика. Школьный этап 2020.


9 класс

Автор комплекта: Кутелев К.А.

Тёплый график

Вариант 1

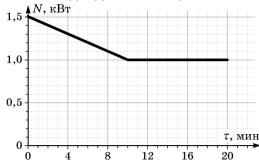
а. В калориметре находился лёд массой m = 720 г с начальной температурой $t_0 = 0$ °C. Ко льду начинают подводить тепло. Зависимость мощности нагрева от времени показана на рисунке.

Удельная теплота плавления льда $\lambda = 3.3 \cdot 10^5$ Дж/кг.

Удельная теплоёмкость воды $C = 4,2 \cdot 10^3 \, \text{Дж/(кг} \cdot {}^{\circ}\text{C}).$

b. Определите:

- 1) Максимальную подведённую мощность (в киловаттах, округлите до целого)(2 балла);
- 2) количество теплоты подведённое за первые 2 минуты (в килоджоулях, округлите до целого)(2 балла);
- 3) момент времени когда весь лёд растает (в минутах, округлите до целого)(2 балла);
- 4) количество теплоты подведённое к моменту выключения нагревателя (в килоджоулях, округлите до целого)(2 балла);
- 5) температуру системы в момент времени $\tau = 7$ мин (в градусах Цельсия, округлите до десятых)(2 балла).
 - с. Ответы:
 - 1) 1
 - 2) 120
 - 3) 4
 - 4) 420
 - 5) [49,0...50,0]


d. Решение:

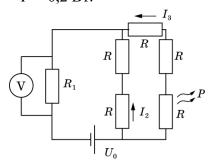
- 1) Максимум мощности на графике 1 кВт.
- 2) Для постоянной мощности $Q_1 = N \Delta \tau_1 = 120 \text{ кДж}$
- 3) К моменту, когда весь лёд растает, $N\Delta \tau_2 = \lambda m -> \Delta \tau_2 = \lambda m/N = 237,6$ с ≈ 4 мин. Мы видим, что к этому моменту мощность остаётся постоянной.
- 4) Теплоту Q_2 найдём как площадь под графиком от $\tau=0$ мин до $\tau=9$ мин. $Q_2=420$ кДж.
- 5) Температура начнёт возрастать после того, как весь лёд растает (4 мин). $Q_3 = Cm\Delta t -> \Delta t = Q_3/(Cm)$. Теплоту Q_3 (пошедшую на нагрев воды) найдём как площадь под графиком от $\tau = 4$ мин до $\tau = 7$ мин. $Q_3 = 150$ кДж. $\Delta t \approx 49,6$ °C.

Вариант 2

е. В калориметре находился лёд массой m = 720 г.Ко льду начинают подводить тепло. Зависимость мощности нагрева от времени показана на рисунке. Лёд начинает плавится в момент $\tau = 10$ мин.

Подводимая мощность

Удельная теплота плавления льда $\lambda = 3.3 \cdot 10^5$ Дж/кг.

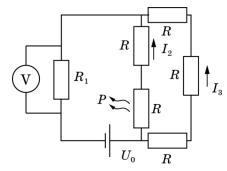

Удельная теплоёмкость воды $C = 4.2 \cdot 10^3 \, \text{Дж/(кг} \cdot {}^{\circ}\text{C}).$

- f. Определите:
- 1) Максимальную подведённую мощность (в киловаттах, округлите до целого)(2 балла);
- 2) количество теплоты подведённое за первые 4 минуты (в килоджоулях, округлите до целого) (2 балла);
- 3) момент времени когда весь лёд растает (в минутах, округлите до целого) (2 балла);
- 4) количество теплоты подведённое за 20 минут (в килоджоулях, округлите до целого) (2 балла);
- 5) температуру системы в момент времени $\tau = 16$ мин (в градусах Цельсия, округлите до десятых) (2 балла)
 - g. Ответы:
 - 1) 1,5 и 2 принимаются
 - 2) 336
 - 3) 14
 - 4) 1350
 - 5) [39,0...40,0]
 - h. Решение:
 - 1. Максимум мощности определяется из графика: 1,5 кВт.
 - 2. Чтобы найти энергию, подведённую за первые 4 секунды, можно посчитать площадь под графиком мощности: $Q_1 = (N(0 \text{ c}) + N(4 \text{ c}))/2 \Delta \tau_1 = 336 \text{ кДж}.$
 - 3. К моменту, когда весь лёд растает: $N\Delta \tau_2 = \lambda m$; \Delta $\Delta \tau_2 = \lambda m/N = 237,6$ с ≈ 4 мин, значит расплавление произошло в момент $\tau = 10 + 4 = 14$ мин.
 - 4. Теплоту Q_2 найдём как площадь под графиком от $\tau=0$ мин до $\tau=20$ мин. $Q_2=1350$ кДж.
 - 5. Температура начнёт возрастать с момента полного расплавления (14 мин). $Q_3 = Cm\Delta t$; $\Delta t = Q_3/(Cm)$. Теплоту Q_3 найдём как площадь под графиком от $\tau = 14$ мин до $\tau = 16$ мин. $Q_3 = 120$ кДж. $\Delta t \approx 39,7$ °C.

Схематичное расследование

Вариант 1

а. Электрическая цепь состоит из идеальной батарейки с $U_0 = 5.0$ В, идеального вольтметра, нескольких резисторов R = 5.0 Ом и резистора с неизвестным сопротивлением R_1 . На одном из резисторов (см. рис.) выделяется тепловая мощность P = 0.2 Вт.


- b. Определите:
 - 1) Силу тока I_3 (в амперах, округлите до десятых)(2 балла);
 - 2) силу тока I_2 (в амперах, округлите до десятых)(2 балла);
 - 3) показания вольтметра U_V (в вольтах, округлите до целого)(2 балла);
 - 4) сопротивление резистора R_1 (в омах, округлите до целого)(2 балла);
- 5) тепловую мощность выделяющуюся во всей системе P_0 (в ваттах, округлите до десятых)(2 балла).
 - с. Ответы:
 - 1) 0,2
 - 2) 0,3
 - 3) 2
 - 4) 4
 - 5) 2,5
 - d. Решение:
 - 1) I_3 это и сила тока в резисторе с P, значит (закон Джоуля-Ленца) $I_3 = \sqrt{\frac{P}{R}}$

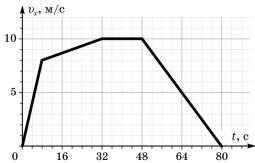
0,2 A.

- 2) I_2 это и сила тока в параллельной цепи с сопротивлением в 1,5 раза меньшим. Значит (закон Ома) I_2 = 0,3 A.
- 3) Падение напряжения U на любой из параллельных веток 3 В (произведение силы тока в ветви на полное её сопротивление), напряжение батареи U_0 = 5 В, значит, показания вольтметра U_V = 2 В.
- 4) Через R_1 течёт суммарный ток силой $I_0 = I_2 + I_3 = 0,5$ А. Падение напряжения на нём мы узнали в предыдущем пункте: $U_V = 2$ В. Значит, сопротивление $R_1 = 4$ Ом.
- 5) Полная тепловая мощность равна мощности источника. Сила тока в источнике $I_0 = 0.5$ А, напряжение источника $U_0 = 5.0$ В. Следовательно мощность $P_0 = I_0$ $U_0 = 2.5$ Вт

2. Вариант **2**

а. Электрическая цепь состоит из идеальной батарейки с $U_0 = 15,0$ В, идеального вольтметра, нескольких резисторов R = 10,0 Ом и резистора с неизвестным сопротивлением R_1 . На одном из резисторов (см. рис) выделяется тепловая мощность P = 3,6 Вт.

- b. Определите:
 - 1) Силу тока I_2 (в амперах, округлите до десятых)(2 балла);
 - 2) силу тока I_3 (в амперах, округлите до десятых)(2 балла);
 - 3) показания вольтметра U_V (в вольтах, округлите до целого)(2 балла);
 - 4) сопротивление резистора R_1 (в омах, округлите до целого)(2 балла);
- 5) тепловую мощность выделяющуюся во всей системе P_0 (в ваттах, округлите до десятых)(2 балла)
 - с. Ответы:
 - 1) 0,6
 - 2) 0,4
 - 3) 3
 - 4) 3
 - 5) 15,0
 - d. Решение:
 - 1) I_2 это и сила тока в резисторе с P, значит (закон Джоуля-Ленца) $I_2 = \sqrt{\frac{P}{R}}$


= 0.6 A.

- 2) I_3 это и сила тока в параллельной цепи (напряжение одинаковое) с сопротивлением в 1,5 раза большим. По закону Ома I_3 = 0,4 A.
- 3) Падение напряжения на любой из параллельных веток $U=12~\mathrm{B}$ (произведение силы тока в ветви на полное её сопротивление), напряжение батареи $U_0=15~\mathrm{B}$, значит, показания вольтметра $U_{\mathrm{V}}=3~\mathrm{B}$.
- 4) Через R_1 течёт суммарный ток силой $I_0 = 0,4+0,6=1,0$ А. Падение напряжения на нём мы узнали в предыдущем пункте: 3 В. Значит, сопротивление $R_1 = 3$ Ом.
- 5) Полная тепловая мощность равна мощности источника. Сила тока в источнике I_0 =1,0 A, напряжение источника U_V =15 B. Следовательно, мощность $P_0 = I_0U_0 = 15,0$ Вт.

Застрял в пути.

Вариант 1

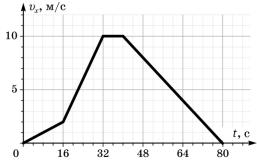
а. Старенький грузовичок резво стартовал на прямолинейном участке дороги. Но вскоре, двигатель начал барахлить, и грузовик остановился. Зависимость скорости грузовика от времени показана на графике.

- b. Определите для грузовика:
 - 1) Максимальную скорость v_{max} (в м/с, округлите до целого) (1 балл);
 - 2) максимальное ускорение a_{max} (в м/с², округлите до целого)(2 балла);
 - 3) путь, пройденный до остановки S (в метрах, округлите до целого)(3 балла);
 - 4) среднюю путевую скорость за всё время движения $v_{\rm cp}$ (в м/с, округлите до

десятых)(2 балла);

5) проекцию ускорения при торможении a_x (в м/с², округлите до сотых)(2

балла).


- с. Ответы:
 - 1) 10
 - 2) 1
 - 3) 568
 - 4) 7,1
 - 5) 0,31
- d. Решение:
 - 1) Максимальная скорость по графику $v_{\text{max}} = 10 \text{ м/c}$.
 - 2) Ускорение пропорционально угловому коэффициенту на данном графике.

Наибольшее ускорение на первом участке $a_{\text{max}} = (8 \text{ м/c} - 0 \text{ м/c})/(8 \text{ c} - 0 \text{ c}) = 1 \text{ м/c}^2$.

- 3) Путь пропорционален площади под графиком скорости. S = 568 м.
- 4) Средняя путевая скорость это отношение пути ко времени его прохождения. $v_{\rm cp}$ = 568 м/80 с = 7,1 м/с.
- 5) Торможение происходит на участке 48 80 с. Скорость меняется от 10 м/с до 0. По определению ускорения a_x = (0 10)/(80 48) \approx 0,31 м/с².

Вариант 2

е. Старенький грузовичок резво стартовал на прямолинейном участке дороги. Но вскоре, двигатель начал барахлить, и грузовик остановился. Зависимость скорости грузовика от времени показана на графике.

f. Определите для грузовика:

- 1) Максимальную скорость v_{max} (в м/с, округлите до целого)(1 балл);
- 2) максимальное ускорение a_{max} (в м/с², округлите до целого)(2 балла);
- 3) путь, пройденный до остановки S (в метрах, округлите до целого)(3 балла);
- 4) среднюю путевую скорость за всё время движения $v_{\rm cp}$ (в м/с, округлите до десятых)(2 балла);
- 5) проекцию ускорения при торможении a_x (в м/с², округлите до сотых)(2 балла).
 - g. Ответы:
 - 1) 10
 - 2) 0,5
 - 3) 392
 - 4) 4,9
 - 5) 0,25
 - h. Решение:
 - 1) Максимальная скорость по графику $v_{\text{max}} = 10 \text{ м/c}$.
 - 2) Ускорение пропорционально угловому коэффициенту на данном графике.

Наибольшее ускорение на первом участке $a_{\text{max}} = (10 \text{ м/c} - 2 \text{ м/c})/(32 \text{ c} - 16 \text{ c}) = 0.5 \text{ м/c}^2$.

- 3) Путь пропорционален площади под графиком скорости. S = 392 м.
- 4) Средняя путевая скорость это отношение пути ко времени его прохождения. $v_{\rm cp}$ = 392 м/80 с = 4,9 м/с.
- 5) Торможение происходит на участке 40 80 с. Скорость меняется от 10 м/с до 0. По определению ускорения a_x = (0 10)/(80 40) \approx 0,25 м/с²