

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО АСТРОНОМИИ 2020-2021 УЧЕБНЫЙ ГОД МОСКОВСКАЯ ОБЛАСТЬ ШКОЛЬНЫЙ ЭТАП

10 класс

- 1. 4 задания по 2 варианта
- 2. 4 задания по 8 баллов в сумме 32 балла

Обращение к участникам:

Уважаемый участник!

Астрономия один из самых захватывающих и интересных предметов в школьной программе. объединяющий в себе большое количество знаний. А олимпиада по Астрономии - хороший способ развить свои знания и способности и узнать много нового и интересного.

Необходимо помнить, что в олимпиаде важно решение задачи, а не правильный ответ. Можно давать неполные ответы к задаче, и это тоже частично будет засчитываться, если ваши предположения верны. Главное пробовать. Желаем тебе успехов при решении заданий!

- 1. Астрономия
- 2. Задание №1 Как далеко до Марса?
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №1
 - а. Условие:

Рис.1 Селфи фотография марсохода "Любопытство" на Марсе в 2017 году.

В последние годы на Марс было отправлено большое количество марсоходов, которые занимаются исследованием поверхности "красной" планеты. Сигналы, отправляемые аппаратами по радиосвязи, распространяются со скоростью света. Известно, что свет от Солнца до Земли идет 500 секунд, а сигнал от марсохода до Земли - 10.6 минуты.

Справочные данные:

Среднее расстояние от Марса до Солнца составляет 1.5 а.е.

Орбиты Земли и Марса считать круговыми и лежащими в одной плоскости.

- 1) Определите расстояние от Земли до Марса, в момент передачи сигнала с марсохода, в млн. километров. (краткий численный ответ)
- 2) Определите расстояние до Марса в а.е. с точностью до десятых долей. (краткий численный ответ)
- 3) Определите скорость сигнала, отправленного с марсохода, на Землю в тыс. км в секунду (краткий численный ответ)

- 4) Дальше или ближе к Земле чем Солнце находился Марс в момент передачи сигнала. (Выбор одного из нескольких: Дальше, На равном расстоянии, Ближе)
- в. Ответы
- 1) 191 млн. км. 2 балла (точность ±2)
- 2) 1.3 а.е. 3 балла (точность 0.1)
- 3) 300 тыс. км в секунду 2 балла (точность ±2)
- 4) Дальше 1 балл

г. Решение:

1 а.е. составляет 150 млн.км. За одну секунду свет проходит 150 млн км / 500 с = 300000 км. 10.6 минуты = 636 сек. Это в 1.272 раза превышает время, которое нужно свету, чтобы пройти расстояние в 1.а.е от Солнца до Земли, а значит и расстояние будет превышать в 1.272 или округленно в 1.3 раза расстояние от Земли до Солнца. И расстояние в километрах до Марса будет 1.272*150 = 191 млн. км.

Автор задачи: Игнатьев В. Б.

Изображение

https://apod.nasa.gov/apod/image/1711/Selfie Curiosity 3577.jpg

- 1. Астрономия
- 2. Задание №1 Как далеко до Марса?
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №2
 - а. Условие:

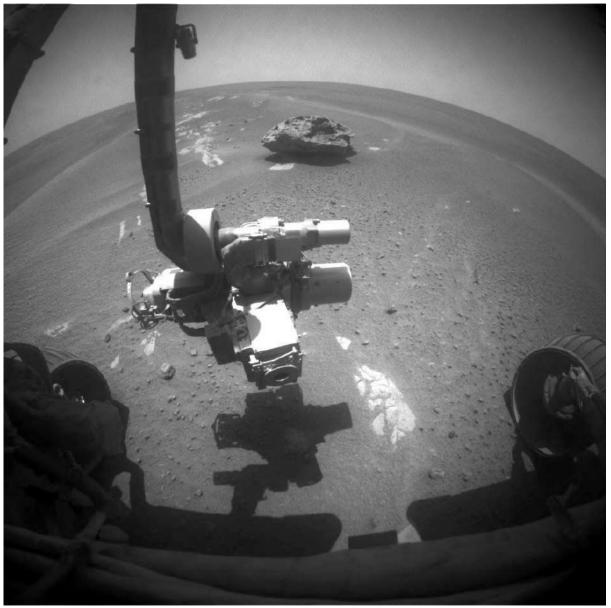


Рис.1 Фотография с марсохода "Благоприятная возможность" на Марсе в 2009 году.

В последние годы на Марс было отправлено большое количество марсоходов, которые занимаются исследованием поверхности "красной" планеты. Сигналы, отправляемые аппаратами по радиосвязи, распространяются со скоростью света. Известно, что свет от Солнца до Земли идет 500 секунд, а сигнал от марсохода до Земли - 0.11 часа.

Справочные данные:

Среднее расстояние от Марса до Солнца составляет 1.5 а.е.

Орбиты Земли и Марса считать круговыми и лежащими в одной плоскости.

б. Вопросы

- 1) Определите расстояние от Земли до Марса, в момент передачи сигнала с марсохода, в млн. километров. (краткий численный ответ)
- 2) Определите расстояние до Марса в а.е. с точностью до десятых долей. (краткий численный ответ)
- 3) Определите скорость сигнала, отправленного с марсохода на Землю, в тыс. км в секунду (краткий численный ответ)
- 4) Дальше или ближе к Земле чем Солнце находился Марс в момент передачи сигнала. (Выбор одного из нескольких: Дальше, На равном расстоянии, Ближе)
- в. Ответы
- 1) 119 млн. км. 2 балла (точность ±2)
- 2) 0.8 а.е. 3 балла (точность 0.1)
- 3) 300 тыс. км в секунду 2 балла (точность ±2)
- 4) Ближе -1 балл

г. Решение:

1 а.е. составляет 150 млн.км. За одну секунду свет проходит 150 млн км / 500 с = 300000 км. 0.11 часа = 396 сек. Это в 0.792 раза меньше времени, которое нужно свету, чтобы пройти расстояние в 1.a.e от Солнца до Земли, а значит и расстояние будет составлять 0.792 или округленно в 0.8 раза расстояния от Земли до Солнца. И расстояние в километрах до Марса будет 0.792*150 = 119 млн. км.

Автор задачи: Игнатьев В. Б.

Изображение

https://apod.nasa.gov/apod/image/0908/blockmars opportunity big.jpg

- 1. Астрономия
- 2. Задание №2 Онлайн трансляция
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №1

а. Условие

В недалеком будущем к 2030 году "Роскосмос" планирует строительство лунной базы и лунной обсерватории. Представим, что для удобства связи станцию разместили в центре видимого с Земли полушария Луны.

Рис.1 Проект Лунной базы, нарисованный художником Космонавты ведут онлайн трансляцию восхода Солнца. Известно:

- а. На небе Земли мы видим Солнце как диск, и его угловой размер составляет пол градуса.
- b. Продолжительность солнечных суток на 3емле составляет 24 часа
- с. Орбиты Земли вокруг Солнца и Луны вокруг Земли круговые Определите:

- 1. Сколько времени в минутах будет продолжаться эта трансляция, если она начинается с появления верхнего края диска Солнца и заканчивается в момент отрыва нижнего края диска Солнца от видимого горизонта Луны? (краткий ввод)
- 2. Можно ли на этой лунной базе наблюдать заход Земли за горизонт Луны? (выбор из вариантов да или нет)
- 3. Сколько часов будет продолжаться ночь на этой лунной базе? (краткий ввод)

4. Сколько наблюдательных часов будет в распоряжении лунных астрономов на этой лунной базе за одни солнечные сутки на Луне? (краткий ввод)

в. Ответы

- 1. 60 минут 3 балла, 55 минут 2 балла (точность 2 минуты)
- нет 1 балл.
- 3. 354 часа 2 балла, 328 часов 1 балл (точность 5 часов)
- 4. 708 часов 2 балла, 655 часов 1 балл (точность 5 часов)

г. Решение

Первое, что необходимо установить угловой размер Солнца на небе Луны - он так же как и на Земле составит 0.5° поскольку расстояние от Луны до Земли много меньше чем от Земли до Солнца. Далее вспомним, что с Земли мы наблюдаем смену Лунных фаз с периодом 29.5 дней. Это и есть продолжительность солнечных суток на Луне. Мы напрямую с Земли видим, как перемещается граница дня и ночи (она называется - терминатор) на Луне. Следовательно, полный круг в 360° терминатор проходит за 29.5 дней или около 12° в земные солнечные сутки, или же 0.5° в час. Ровно на средний размер диска Солнца. Значит восход Солнца будет длиться 1 час или 60 минут. Такова будет продолжительность трансляции.

Второй вопрос задачи имеет однозначный ответ - нет. Дело в том, что для Земного наблюдателя Луна повернута к Земле одной и той же своей стороной. Следовательно, Земля висит почти в одном и том же месте на небе Луны для наблюдателя с поверхности Луны.

Третий вопрос - ночь длится половину лунных солнечных суток, пока Солнце находится под горизонтом - это 29.5*24/2 = 354 часа.

Четвертый вопрос - наблюдать звездное небо на Луне можно все время. Там нет атмосферы, а, следовательно, звезды видны и днем рядом с Солнцем. Поэтому наблюдения можно вести и днем, и ночью. Следовательно, это будет 29.5*24 = 708 часов за одни солнечные сутки на Луне.

Возможен вариант решения, где ученик продолжительность солнечных суток на Луне возьмет равным периоду обращения Луны вокруг Земли - 27.3 дня, это даст скорость движения терминатора в 0.55° за час. Что неверно, так как Луна движется вместе с Землей по орбите вокруг Солнца. В этом случае ответы изменятся, и станут следующими: восход - 55 минут, продолжительность ночи 328 часов, продолжительность времени наблюдений - 655 часов Тогда, 1 пункт оценивается из 2 баллов, 2 так же из 1 балла (он не зависит от продолжительности солнечных суток на Луне), 3 из 1 балла и 4 из 1 балла. Итоговая максимальная оценка при правильных расчетах будет 5 баллов.

Автор задачи: Кузнецов М. В.

Изображение:

 $\underline{\text{https://upload.wikimedia.org/wikipedia/commons/4/40/Lunar_base_concept_drawing_s78_23252.jpg?uselang=ru}$

- 1. Астрономия
- 2. Задание №2 Онлайн трансляция
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №2

а. Условие

В недалеком будущем к 2035 году "Роскосмос" планирует строительство лунной базы и лунной обсерватории. Представим, что для удобства связи станцию разместили в центре видимого с Земли полушария Луны.

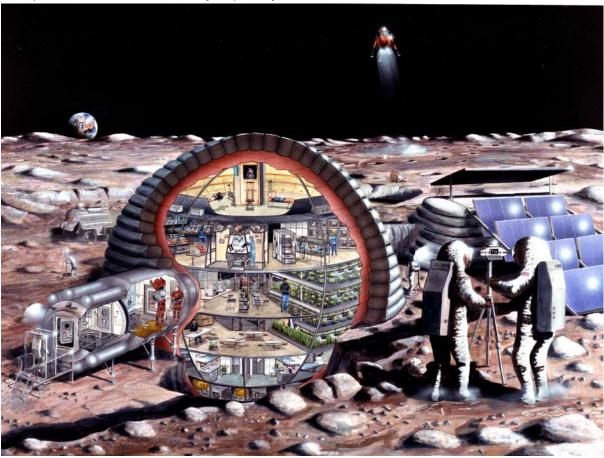


Рис.1 Проект Лунной базы, нарисованный художником Космонавты ведут онлайн трансляцию захода Солнца. Известно:

- а. На небе Земли мы видим Солнце как диск, и его угловой размер составляет пол градуса.
- b. Продолжительность солнечных суток на Земле составляет 24 часа
- с. Орбиты Луны вокруг Земли и Земли вокруг Солнца круговые

Определите:

б. Вопросы

1. Сколько времени в минутах будет продолжаться эта трансляция, если она начинается с касания нижнего края диска Солнца горизонта на небе Луны и

- заканчивается в момент исчезновения верхнего края диска Солнца за горизонтом Луны? (краткий ввод)
- 2. Можно ли на этой лунной базе наблюдать восход Земли над горизонтом Луны? (выбор из вариантов да или нет)
- 3. Сколько часов будет продолжаться день на этой лунной базе? (краткий ввод)
- 4. Сколько часов за солнечные сутки на Луне будет возможно проводить астрономические наблюдения в обсерватории на этой лунной базе? (краткий ввод)

в. Ответы

- 5. 60 минут 3 балла, 55 минут 2 балла (точность 2 минуты)
- 6. нет 1 балл,
- 7. 354 часа 2 балла, 328 часов 1 балл (точность 5 часов)
- 8. 708 часов 2 балла, 655 часов 1 балл (точность 5 часов)

г. Решение

Первое, что необходимо установить угловой размер Солнца на небе Луны - он так же, как и на Земле составит 0.5° поскольку расстояние от Луны до Земли много меньше чем от Земли до Солнца. Далее вспомним, что с Земли мы наблюдаем смену Лунных фаз с периодом 29.5 дней. Это и есть продолжительность солнечных суток на Луне. Мы напрямую с Земли видим, как перемещается граница дня и ночи (она называется - терминатор) на Луне. Следовательно, полный круг в 360° терминатор проходит за 29.5 дней или около 12° в земные солнечные сутки, или же 0.5° в час. Ровно на средний размер диска Солнца. Значит заход Солнца будет длиться 1 час или 60 минут. Такова будет продолжительность трансляции.

Второй вопрос задачи имеет однозначный ответ - нет. Дело в том, что для Земного наблюдателя Луна повернута к Земле одной и той же своей стороной. Следовательно, Земля висит почти в одном и том же месте на небе Луны для наблюдателя с поверхности Луны.

Третий вопрос - день длится половину лунных солнечных суток, пока Солнце находится над горизонтом - это 29.5*24/2 = 354 часа.

Четвертый вопрос - наблюдать звездное небо на Луне можно все время. Там нет атмосферы, а, следовательно, звезды видны и днем рядом с Солнцем. Поэтому наблюдения можно вести и днем, и ночью. Следовательно, это будет 29.5*24 = 708 часов за одни солнечные сутки на Луне.

Возможен вариант решения, где ученик продолжительность солнечных суток на Луне возьмет равным периоду обращения Луны вокруг Земли - 27.3 дня, это даст скорость движения терминатора в 0.55° за час. Что неверно, так как Луна движется вместе с Землей по орбите вокруг Солнца. В этом случае ответы изменятся, и станут следующими: заход - 55 минут, продолжительность дня 328 часов, продолжительность времени наблюдений - 655 часов Тогда, 1 пункт оценивается из 2 баллов, 2 так же из 1 балла (он не зависит от продолжительности солнечных суток на Луне), 3 из 1 балла и 4 из 1 балла. Итоговая максимальная оценка при правильных расчетах будет 5 баллов.

Автор задачи:

Кузнецов М. В.

Изображение

 $\underline{\text{https://upload.wikimedia.org/wikipedia/commons/e/e4/Inflatable habitat s89 20084.jpg?usel} \\ \underline{\text{ang=ru}}$

- 1. Астрономия
- 2. Задание №3 Путь Солнца
- Максимальное количество баллов за задание 8 баллов Вариант №1
 - а. Условие:

Рис.1 Пример карты звездного неба

Известно, что в течении года Солнце перемещается по звездному небу. Движение Солнца по небу происходит в направлении востока, и за год оно замыкает на небе полный круг, который называется эклиптика. В своем пути этот круг проходит через созвездия звездного неба. Отметьте какие из перечисленных созвездий посещает солнечный диск в своем пути по небу за год?

- б. Укажите верные вариант или варианты ответа:
 - 1. Овен
 - 2. Кит
 - 3. Близнецы
 - 4. Лев
 - 5. Козерог
 - 6. Большая Медведица
 - 7. Змееносец
 - 8. Сириус
- в. Ответ

Система оценивания - за каждый верный отмеченный или не отмеченный ответ - 1 балл, в сумме 8 баллов. Ответы можно перемешивать. Схема верных ответов указано ниже.

Созвездие	Отметка
Овен	X
Кит	X
Близнецы	X
Лев	X
Козерог	X
Большая Медведица	
Змееносец	х
Сириус	

г. Решение

В своем пути по небу Солнце проходит последовательно: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Змееносец (в круг зодиакальных знаков не входит, но Солнце проходит через это созвездие), Стрелец, Козерог, Водолей и потом снова

Рыбы.

Если учесть, что Солнце - это не точка, а диск, то тогда добавляется еще одно Созвездие – Кит, где Солнце оказывается частью своего диска 27 марта.

Большая Медведица - это приполярное созвездие, через которое не проходит годичный путь Солнца. Поэтому в ответе его отвечать не нужно.

Сириус - это ярчайшая звезда ночного неба.

Автор задачи: Кузнецов М. В.

Источники изображений:

http://www.karty.ru/karta-zvezdnogo-neba.html

- 1. Астрономия
- 2. Задание №3 Путь Солнца
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №2
 - а. Условие:

Рис.1 Пример карты звездного неба

Известно, что в течении года Солнце перемещается по звездному небу. Движение Солнца по небу происходит в направлении востока, и за год оно замыкает на небе полный круг, который называется эклиптика. В своем пути этот круг проходит через созвездия звездного неба. Отметьте какие из перечисленных созвездий посещает солнечный диск в своем пути по небу за год?

- б. Укажите верные вариант или варианты ответа:
- 1. Телец
- 2. Кит
- 3. Рак
- 4. Дева
- 5. Водолей
- 6. Дракон
- 7. Змееносец
- 8. Альтаир
- в. Ответ.

Система оценивания - за каждый верный отмеченный или не отмеченный ответ - 1 балл, в сумме 8 баллов. Ответы можно перемешивать. Схема верных ответов указано ниже.

Созвездие	Отметка
Телец	X
Кит	X
Рак	X
Дева	X
Водолей	X
Дракон	
Змееносец	X
Альтаир	

г. Решение

В своем пути по небу Солнце проходит последовательно: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Змееносец (в круг зодиакальных знаков не входит, но Солнце проходит через это созвездие), Стрелец, Козерог, Водолей и потом снова

Рыбы.

Если учесть, что Солнце - это не точка, а диск, то тогда добавляется еще одно Созвездие - Кит, где Солнце оказывается частью своего диска 27 марта.

Дракон - это приполярное созвездие, через которое не проходит годичный путь Солнца. Поэтому в ответе его отвечать не нужно.

Альтаир - это ярчайшая звезда созвездия Орла.

Автор задачи: Кузнецов М. В.

Источники изображений:

http://www.karty.ru/karta-zvezdnogo-neba.html

- 1. Астрономия
- 2. Задание №4 Солнечный зайчик
- 3. Максимальное количество баллов за задание 8 баллов
- 4. Вариант №1
 - а. Условие:

Рис.1 Солнечный зайчик на стене дома.

Ученик школы Петров проводит астрономический эксперимент в день осеннего равноденствия в северном полушарии Земли - пускает зайчики плоским зеркалом своей одноклассницы Сидоровой на стену противоположного школе здания. Зайчик на стене здания оказывается точно на уровне окна школы, откуда Петров проводит свой "эксперимент". Помогите Петрову ответить на следующие после условия вопросы, если известно два факта:

- 1) Измерения Петрова при помощи транспортира показали угол наклонения плоскости зеркала к горизонту α =65°,
- 2) время эксперимента точно соответствует моменту верхней кульминации центра Солнечного диска (истинному местному полдню)

- 1) Каково склонение Солнца на момент эксперимента, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
- 2) В какой месяц проходил данный эксперимент? (Выбор из нескольких вариантов месяцы список)
- 3) Какова высота Солнца над горизонтом в момент проведения эксперимента, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
- 4) Какова широта школы, где ребята проводили эксперимент, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
 - в. Ответы
 - 1) 0.0 2 балла (точность ±0.1)
 - 2) сентябрь 2 балла
 - 3) 50.0 2 балла (точность ±0.1)
 - 4) 40.0 2 балла (точность ±0.1)

г. Решение:

Для начала необходимо определить дату и склонение Солнца.

Ответ на первый вопрос - склонение Солнца в момент равноденствия равно 0°.

Осеннее равноденствие происходит 22 сентября. Следовательно, ответ на второй вопрос - сентябрь.

Высоту Солнца можно определить исходя из угла наклона зеркала и закона отражения, по которому угол падения на зеркало равен углу отражения от него. Также важным фактом является то, что отраженный луч идет путем параллельного горизонта, что следует из условия задачи. Следовательно, если записать равенство, что угол при горизонтальной прямой будет равен:

$$lpha + 90^{\circ} + rac{h}{2} = 180^{\circ}$$
 откуда высота Солнца составит

$$h = 2 \cdot (90^{\circ} - \alpha) = 2 \cdot (90^{\circ} - 65^{\circ}) = 50^{\circ}$$

Для нахождения широты потребуется формула высоты над горизонтом в верхней кульминации: $h=90^{\circ}-\varphi+\delta$ Откуда выражается широта точки эксперимента: $\varphi=90^{\circ}-h+\delta=90^{\circ}-50^{\circ}+0^{\circ}=40^{\circ}$ с.ш.

Автор задачи: Игнатьев В.Б.

Изображение

https://yandex.ru/collections/card/5a9e2c4fcff35f0a1767e55a/

- 5. Астрономия
- 6. Задание №4 Солнечный зайчик
- 7. Максимальное количество баллов за задание 8 баллов
- 8. Вариант №2

а. Условие:

Рис.1 Солнечный зайчик на стене дома.

Ученик школы Петров проводит астрономический эксперимент в день зимнего солнцестояния в северном полушарии Земли - пускает зайчики плоским зеркалом своей одноклассницы Сидоровой на стену противоположного школе здания. Зайчик на стене здания оказывается точно на уровне окна школы, откуда Петров проводит свой "эксперимент". Помогите Петрову ответить на следующие после условия вопросы, если известно два факта:

- 1) Измерения Петрова при помощи транспортира показали угол наклонения плоскости зеркала к горизонту α =80°,
- 2) время эксперимента точно соответствует моменту верхней кульминации центра Солнечного диска (истинному местному полдню)

- 1) Каково склонение Солнца на момент эксперимента, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
- 2) В какой месяц проходил данный эксперимент? (Выбор из нескольких вариантов месяцы список)
- 3) Какова высота Солнца над горизонтом в момент проведения эксперимента, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
- 4) Какова широта школы, где ребята проводили эксперимент, укажите ответ с точностью до десятых долей градуса (краткий численный ответ)
 - в. Ответы
 - 1) -23.5° 2 балла (точность ±0.1)
 - 2) декабрь 2 балла
 - 3) 20.0° 2 балла (точность ±0.1)
 - 4) 46.5° 2 балла (точность ±0.1)

г. Решение:

Для начала необходимо определить дату и склонение Солнца.

Ответ на первый вопрос - склонение Солнца в момент зимнего солнцестояния равно -23.5°.

Зимнее солнцестояние происходит около 22 декабря. Следовательно, ответ на второй вопрос - декабрь.

Высоту Солнца можно определить исходя из угла наклона зеркала и закона отражения, по которому угол падения на зеркало равен углу отражения от него. Также важным фактом является то, что отраженный луч идет путем параллельного горизонта, что следует из условия задачи. Следовательно, если записать равенство, что угол при горизонтальной прямой будет равен:

$$\alpha + 90^{\circ} + \frac{h}{2} = 180^{\circ}$$
 откуда высота Солнца составит

$$h = 2 \cdot (90^{\circ} - \alpha) = 2 \cdot (90^{\circ} - 80^{\circ}) = 20^{\circ}$$

Для нахождения широты потребуется формула высоты над горизонтом в верхней кульминации:

$$h = 90^{\circ} - \varphi + \delta$$

Откуда выражается широта точки эксперимента: $\varphi = 90^{\circ} - h + \delta = 90^{\circ} - 20^{\circ} - 23.5^{\circ} = 46.5^{\circ}$ с.ш.

Автор задачи: Игнатьев В.Б.

Изображение

https://yandex.ru/collections/card/5a9e2c4fcff35f0a1767e55a/

