ОГЭ 2025. Экзаменационная работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут)
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2025 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ОГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Интересные задания:
Автомобильное колесо, как правило, представляет из себя металлический диск с установленной на него резиновой шиной. Диаметр диска совпадает с диаметром внутреннего отверстия в шине. Для маркировки автомобильных шин применяется единая система обозначений. Например, 195/65 R15 (рис. 1). Первое число (число 195 в приведённом примере) обозначает ширину шины в миллиметрах (параметр B на рисунке 2). Второе число (число 65 в приведённом примере) — процентное отношение высоты боковины (параметр H на рисунке 2) к ширине шины, то есть 100 H B . Последующая буква обозначает тип конструкции шины.
В данном примере буква R означает, что шина радиальная, то есть нити каркаса в боковине шины расположены вдоль радиусов колеса. На всех легковых автомобилях применяются шины радиальной конструкции. За обозначением типа конструкции шины идёт число, указывающее диаметр диска колеса d в дюймах (в одном дюйме 25,4 мм). Таким образом, общий диаметр колеса D легко найти, зная диаметр диска и высоту боковины. Возможны дополнительные маркировки, обозначающие допустимую нагрузку на шину, сезонность использования, тип дорожного покрытия и другие параметры. Завод производит внедорожники определённой модели и устанавливает на них колёса с шинами маркировки 205/55 R16.
Задание №1. Завод допускает установку шин с другими маркировками. В таблице показаны разрешённые размеры шин. Шины какой наименьшей ширины можно устанавливать на автомобиль, если диаметр диска равен 17 дюймам? Ответ дайте в миллиметрах.
Задание №2. На сколько миллиметров радиус колеса с шиной маркировки 205/45 R17 меньше, чем радиус колеса с шиной маркировки 215/55 R17?
Задание №3. На сколько миллиметров увеличится диаметр колеса, если заменить колёса, установленные на заводе, колёсами с шинами маркировки 225/45 R17?
Задание №4. Найдите диаметр колеса автомобиля, выходящего с завода. Ответ дайте в миллиметрах.
Задание №5. На сколько процентов увеличится пробег автомобиля при одном обороте колеса, если заменить колёса, установленные на заводе, колёсами с шинами маркировки 215/55 R16? Результат округлите до десятых.
Задание №10. Родительский комитет закупил 20 пазлов для подарков детям в связи с окончанием учебного года, из них 10 с машинами и 10 с видами городов. Подарки распределяются случайным образом между 20 детьми, среди которых есть Коля. Найдите вероятность того, что Коле достанется пазл с машиной.
Задание №14. Водитель автомобиля начал торможение. За секунду после начала торможения автомобиль проехал 30 м, а за каждую следующую секунду он проезжал на 4 м меньше, чем за предыдущую. Сколько метров автомобиль прошёл за первые 5 секунд торможения?
Задание №16 Треугольник ABC вписан в окружность с центром в точке O. Точки O и C лежат в одной полуплоскости относительно прямой AB. Найдите угол ACB, если угол AOB равен 153°. Ответ дайте в градусах.
Задание №17. Один из углов равнобедренной трапеции равен 131°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Задание №18. На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.
Задание №19. Какое из следующих утверждений верно? 1) Диагональ трапеции делит её на два равных треугольника. 2) Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету. 3) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу. В ответ запишите номер выбранного утверждения.
Задание №21.. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 11 км/ч меньше скорости второго.
Задание №23. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB = 12, DC = 48, AC = 35.
Задание №24. Сторона AB параллелограмма ABCD вдвое больше стороны BC. Точка L — середина стороны AB. Докажите, что CL — биссектриса угла BCD.
Задание №25. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC = 18, а расстояние от точки K до стороны AB равно 1.
Вам будет интересно:
ОГЭ по математике 9 класс 2025. Новый тренировочный вариант №20 (задания и ответы)