ОГЭ по математике 9 класс 2025. Новый тренировочный вариант №20 (задания и ответы)

ОГЭ по математике 9 класс 2025. Новый тренировочный вариант №20 (задания и ответы) ОГЭ 2025. Экзаменационная работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут)


Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2025 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ОГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти

Интересные задания:

На плане изображён дачный участок по адресу: п. Сосновка, ул. Зелёная, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота. При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв. м, а чуть подальше — жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведёт дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1 м×1 м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1. Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырёх цифр.

Задание №2. Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки?

Задание №3. Найдите площадь, которую занимает баня. Ответ дайте в квадратных метрах.

Задание №4. На сколько процентов площадь, которую занимает теплица, меньше площади, которую занимает гараж?

Задание №5. Хозяин участка планирует установить в жилом доме систему отопления. Он рассматривает два варианта: электрическое или газовое отопление. Цены на оборудование и стоимость его установки, данные о расходе газа, электроэнергии и их стоимости даны в таблице. Обдумав оба варианта, хозяин решил установить газовое отопление. Через сколько часов непрерывной работы отопления экономия от использования газа вместо электричества компенсирует разницу в стоимости покупки и установки газового и электрического оборудования?

Задание №10. В среднем из 50 карманных фонариков, поступивших в продажу, шесть неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен.

Задание №14. Каучуковый мячик с силой бросили на асфальт. Отскочив, мячик подпрыгнул на 5,4 м, а при каждом следующем прыжке он поднимался на высоту в три раза меньше предыдущей. При каком по счёту прыжке мячик в первый раз не достигнет высоты 10 см?

Задание №15. В треугольнике ABC угол C равен 90 , M – середина стороны AB, AB 20, BC 10. Найдите CM.

Задание №16. Точка О является серединой стороны CD квадрата ABCD. Радиус окружности с центром в точке O, проходящей через вершину А, равен 1,5. Найдите площадь квадрат ABCD.

Задание №17. В ромбе ABCD угол ABC равен 40°. Найдите угол ACD. Ответ дайте в градусах.

Задание №18. На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Задание №19. Какое из следующих утверждений верно? 1) Отношение площадей подобных треугольников равно коэффициенту подобия. 2) Диагонали прямоугольника точкой пересечения делятся пополам. 3) Биссектриса треугольника делит пополам сторону, к которой проведена. В ответ запишите номер выбранного утверждения.

Задание №21. Свежие фрукты содержат 88% воды, а высушенные — 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

Задание №23. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK = 9, CK = 15.

Задание №24. Окружности с центрами в точках P и Q не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении a:b. Докажите, что диаметры этих окружностей относятся как a:b.

Задание №25. Окружности радиусов 33 и 99 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

 

Вам будет интересно:

ОГЭ по математике 9 класс 2025. Новый тренировочный вариант №19 (задания и ответы)

Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *