ЕГЭ 2025. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2025 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Интересные задания:
1. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.
3. В сосуд, имеющий форму правильной треугольной призмы, налили 2300 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 27 см. Чему равен объем детали? Ответ выразите в cм3 .
4. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?
5. Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.
9. В боковой стенке высокого цилиндрического бака у самого дна закреплён кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нём, выраженная в метрах, меняется по закону, где t — время в секундах, прошедшее с момента открытия крана, 0 H 20 м — начальная высота столба воды, 1 50 k — отношение площадей поперечных сечений крана и бака, а g — ускорение свободного падения (считайте g 10 м/с2 ). Через сколько секунд после открытия крана в баке останется четверть первоначального объёма воды?
10. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
14. В правильной четырёхугольной пирамиде SABCD боковое ребро SA равно 12, а сторона основания AB равна 6. В боковых гранях SAB и SAD провели биссектрисы AL и AM соответственно. а) Докажите, что сечение пирамиды плоскостью ALM делит ребро SC пополам. б) Найдите площадь сечения пирамиды плоскостью ALM.
16. В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; с февраля по июнь каждого года необходимо выплатить часть долга; в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат (в млн рублей) после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?
17. Дан треугольник ABC со сторонами AB = 4, BC = 6 и AC =8. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.
19. а) Можно ли число 2014 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр? б) Можно ли число 199 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр? в) Найдите наименьшее натуральное число, которое можно представить в виде суммы пяти различных натуральных чисел с одинаковой суммой цифр.
Вам будет интересно:
ЕГЭ по математике (профиль) 11 класс 2025. Новый тренировочный вариант №11 (задания и ответы)